Improved Job Scheduling for Achieving Fairness on Apache Hadoop YARN

Thet Hsu Aung, W. Zaw
{"title":"Improved Job Scheduling for Achieving Fairness on Apache Hadoop YARN","authors":"Thet Hsu Aung, W. Zaw","doi":"10.1109/ICAIT51105.2020.9261793","DOIUrl":null,"url":null,"abstract":"Enormous amounts of data are gathered from social media sites, mobile and other business environment. Analyzing the enormous amounts of big data becomes large workloads with distributed applications and the resources of a single machine are insufficient for this application. Hadoop YARN (Yet Another Resource Negotiator) enables running multiple applications over hadoop cluster to utilize the resources efficiently and provide the data parallel programming model. Hadoop YARN breaks up the performance of open source framework for distributed applications and performs job scheduling and monitoring together with storage, processing and analysis of big data on commodity hardware. Apache Hadoop provides for over 200 default parameter configuration settings for all type of clusters and applications. Of If the available parameters misconfigure, the one or more machines in the cluster may decrease the system performance. Appropriate tuning parameters configuration can increase the system performance. Tuning parameter configuration becomes the challenge of Apache Hadoop Framework for utilization of system resources efficiently. In this paper, YARN parameters tuning is done for improving the execution time and efficient job scheduling.","PeriodicalId":173291,"journal":{"name":"2020 International Conference on Advanced Information Technologies (ICAIT)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Information Technologies (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT51105.2020.9261793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Enormous amounts of data are gathered from social media sites, mobile and other business environment. Analyzing the enormous amounts of big data becomes large workloads with distributed applications and the resources of a single machine are insufficient for this application. Hadoop YARN (Yet Another Resource Negotiator) enables running multiple applications over hadoop cluster to utilize the resources efficiently and provide the data parallel programming model. Hadoop YARN breaks up the performance of open source framework for distributed applications and performs job scheduling and monitoring together with storage, processing and analysis of big data on commodity hardware. Apache Hadoop provides for over 200 default parameter configuration settings for all type of clusters and applications. Of If the available parameters misconfigure, the one or more machines in the cluster may decrease the system performance. Appropriate tuning parameters configuration can increase the system performance. Tuning parameter configuration becomes the challenge of Apache Hadoop Framework for utilization of system resources efficiently. In this paper, YARN parameters tuning is done for improving the execution time and efficient job scheduling.
改进的作业调度在Apache Hadoop YARN上实现公平性
从社交媒体网站、手机和其他商业环境中收集了大量数据。对于分布式应用程序,分析海量的大数据将成为巨大的工作负载,而单台机器的资源不足以满足此应用程序的需求。Hadoop YARN (Yet Another Resource Negotiator)支持在Hadoop集群上运行多个应用程序,从而有效地利用资源,并提供数据并行编程模型。Hadoop YARN将分布式应用的开源框架性能分解,在商用硬件上完成作业调度和监控,以及大数据的存储、处理和分析。Apache Hadoop为所有类型的集群和应用程序提供了200多个默认参数配置设置。如果可用参数配置错误,集群中的一台或多台机器可能会降低系统性能。适当的调优参数配置可以提高系统性能。为了有效地利用系统资源,优化参数配置成为Apache Hadoop框架面临的挑战。本文对YARN参数进行了调优,以提高执行时间和作业调度效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信