How robust is the SVM wound segmentation?

M. Kolesnik, A. Fexa
{"title":"How robust is the SVM wound segmentation?","authors":"M. Kolesnik, A. Fexa","doi":"10.1109/NORSIG.2006.275274","DOIUrl":null,"url":null,"abstract":"This paper investigates the robustness of automatic wound segmentation. The work builds upon an automatic segmentation procedure by the support vector machine (SVM)-classifier presented in [M. Kolesnik et al. (2004), (2005)]. Here we extend the procedure by incorporating textural features and the deformable snake adjustment to refine SVM-generated wound boundary. The robustness of SVM-based segmentation is tested against different feature spaces using a long sample of training images featuring a broad variety of wounds' appearance. Recommendations drawn from these experiments provide a useful guideline for the development of a software support system for the visual monitoring of chronic wounds in wound care units","PeriodicalId":425696,"journal":{"name":"Proceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORSIG.2006.275274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

This paper investigates the robustness of automatic wound segmentation. The work builds upon an automatic segmentation procedure by the support vector machine (SVM)-classifier presented in [M. Kolesnik et al. (2004), (2005)]. Here we extend the procedure by incorporating textural features and the deformable snake adjustment to refine SVM-generated wound boundary. The robustness of SVM-based segmentation is tested against different feature spaces using a long sample of training images featuring a broad variety of wounds' appearance. Recommendations drawn from these experiments provide a useful guideline for the development of a software support system for the visual monitoring of chronic wounds in wound care units
SVM伤口分割的鲁棒性如何?
研究了伤口自动分割的鲁棒性。这项工作建立在支持向量机(SVM)分类器的自动分割过程的基础上。Kolesnik et al.(2004),(2005)]。在这里,我们通过结合纹理特征和可变形蛇调整来细化svm生成的伤口边界来扩展该过程。使用具有各种伤口外观的长样本训练图像,针对不同的特征空间测试了基于svm的分割的鲁棒性。从这些实验中得出的建议为伤口护理单元慢性伤口视觉监测软件支持系统的开发提供了有用的指导
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信