The fractional representations of a class of nonlinear systems

A. Krener, Y. Zhu
{"title":"The fractional representations of a class of nonlinear systems","authors":"A. Krener, Y. Zhu","doi":"10.1109/CDC.1989.70269","DOIUrl":null,"url":null,"abstract":"Right and left coprime fractional representations are shown to exist for a special class of nonlinear systems that have both controller and observer forms. A generalized Bezout identity is given for this class of nonlinear systems. Using the controller form, it is possible to design a nonlinear feedback controller. The given system can be right factorized into a composite of a stable postprocessor and an inverse of a stable preprocessor. The right-coprimeness concept is based on this right factorization. When the postprocessor and preprocessor are combined, they form a higher dimensional system. The existence of a stable left inverse of this higher order system constitutes the authors' definition of right coprimeness.<<ETX>>","PeriodicalId":156565,"journal":{"name":"Proceedings of the 28th IEEE Conference on Decision and Control,","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th IEEE Conference on Decision and Control,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1989.70269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Right and left coprime fractional representations are shown to exist for a special class of nonlinear systems that have both controller and observer forms. A generalized Bezout identity is given for this class of nonlinear systems. Using the controller form, it is possible to design a nonlinear feedback controller. The given system can be right factorized into a composite of a stable postprocessor and an inverse of a stable preprocessor. The right-coprimeness concept is based on this right factorization. When the postprocessor and preprocessor are combined, they form a higher dimensional system. The existence of a stable left inverse of this higher order system constitutes the authors' definition of right coprimeness.<>
一类非线性系统的分数表示
对于一类既具有控制器形式又具有观测器形式的特殊非线性系统,证明了左、右素数分数表示的存在。给出了这类非线性系统的广义Bezout恒等式。利用该控制器形式,可以设计非线性反馈控制器。给定的系统可以被正确分解成一个稳定的后处理器和一个稳定的预处理器的逆的组合。右素数概念就是基于这种右分解的。当后处理器和预处理器结合在一起时,它们形成了一个更高维度的系统。该高阶系统的稳定左逆的存在性构成了作者的右互素性定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信