Space-Time Body Pose Estimation in Uncontrolled Environments

Marcel Germann, T. Popa, R. Ziegler, Richard Keiser, M. Gross
{"title":"Space-Time Body Pose Estimation in Uncontrolled Environments","authors":"Marcel Germann, T. Popa, R. Ziegler, Richard Keiser, M. Gross","doi":"10.1109/3DIMPVT.2011.38","DOIUrl":null,"url":null,"abstract":"We propose a data-driven, multi-view body pose estimation algorithm for video. It can operate in uncontrolled environments with loosely calibrated and low resolution cameras and without restricting assumptions on the family of possible poses or motions. Our algorithm first estimates a rough pose estimation using a spatial and temporal silhouette based search in a database of known poses. The estimated pose is improved in a novel pose consistency step acting locally on single frames and globally over the entire sequence. Finally, the resulting pose estimation is refined in a spatial and temporal pose optimization consisting of novel constraints to obtain an accurate pose. Our method proved to perform well on low resolution video footage from real broadcast of soccer games.","PeriodicalId":330003,"journal":{"name":"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIMPVT.2011.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We propose a data-driven, multi-view body pose estimation algorithm for video. It can operate in uncontrolled environments with loosely calibrated and low resolution cameras and without restricting assumptions on the family of possible poses or motions. Our algorithm first estimates a rough pose estimation using a spatial and temporal silhouette based search in a database of known poses. The estimated pose is improved in a novel pose consistency step acting locally on single frames and globally over the entire sequence. Finally, the resulting pose estimation is refined in a spatial and temporal pose optimization consisting of novel constraints to obtain an accurate pose. Our method proved to perform well on low resolution video footage from real broadcast of soccer games.
非受控环境下的时空体姿估计
我们提出了一种数据驱动的视频多视角人体姿态估计算法。它可以在不受控制的环境中使用松散校准和低分辨率相机,并且不限制对可能的姿势或动作的假设。我们的算法首先在已知姿势的数据库中使用基于空间和时间轮廓的搜索来估计粗略的姿势估计。在一种新的姿态一致性步骤中,对估计的姿态进行了改进,该步骤局部作用于单帧,全局作用于整个序列。最后,在包含新约束的空间和时间姿态优化中对得到的姿态估计进行细化,以获得准确的姿态。事实证明,该方法在低分辨率实况转播的足球比赛视频片段上表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信