Jing Zhang, D. Nikovski, Teng-Yok Lee, Tomoya Fujino
{"title":"Fault Detection and Classification of Time Series Using Localized Matrix Profiles","authors":"Jing Zhang, D. Nikovski, Teng-Yok Lee, Tomoya Fujino","doi":"10.1109/ICPHM.2019.8819389","DOIUrl":null,"url":null,"abstract":"We introduce a new primitive, called the Localized Matrix Profile (LMP), for time series data mining. We devise fast algorithms for LMP computation, and propose a fault detector and a fault classifier based on the LMP. A case study using synthetic sensor data generated from a physical model of an electrical motor is provided to demonstrate the effectiveness and efficiency of our approach.","PeriodicalId":113460,"journal":{"name":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2019.8819389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new primitive, called the Localized Matrix Profile (LMP), for time series data mining. We devise fast algorithms for LMP computation, and propose a fault detector and a fault classifier based on the LMP. A case study using synthetic sensor data generated from a physical model of an electrical motor is provided to demonstrate the effectiveness and efficiency of our approach.