Using Unstructured Data to Identify Readmitted Patients

M. Rastegar-Mojarad, J. Lovely, Joshua J. Pankratz, S. Sohn, Donna M. Ihrke, A. Merchea, D. Larson, Hongfang Liu
{"title":"Using Unstructured Data to Identify Readmitted Patients","authors":"M. Rastegar-Mojarad, J. Lovely, Joshua J. Pankratz, S. Sohn, Donna M. Ihrke, A. Merchea, D. Larson, Hongfang Liu","doi":"10.1109/ICHI.2017.99","DOIUrl":null,"url":null,"abstract":"Readmission rate is a quality metric for hospitals. The electronic medical record is the main source to identify readmitted patients and calculating readmission rates. Difficulties remain in identifying patients readmitted to a facility different than the one performing the procedure. In this study, we assessed the impact of using unstructured data in detecting readmission within 30 days of surgery. We implemented two rule-based systems to recognize any mention of readmission in follow-up phone call conversions. We evaluated our systems on datasets from two hospitals. Our evaluation showed using unstructured data, in addition to structured data, increased sensitivity in the both dataset, from 53 to 81 and 66 to 87 percent.","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"644 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Readmission rate is a quality metric for hospitals. The electronic medical record is the main source to identify readmitted patients and calculating readmission rates. Difficulties remain in identifying patients readmitted to a facility different than the one performing the procedure. In this study, we assessed the impact of using unstructured data in detecting readmission within 30 days of surgery. We implemented two rule-based systems to recognize any mention of readmission in follow-up phone call conversions. We evaluated our systems on datasets from two hospitals. Our evaluation showed using unstructured data, in addition to structured data, increased sensitivity in the both dataset, from 53 to 81 and 66 to 87 percent.
使用非结构化数据识别再入院患者
再入院率是衡量医院质量的指标。电子病历是识别再入院患者和计算再入院率的主要来源。在识别重新入院的患者与执行手术的机构不同方面仍然存在困难。在这项研究中,我们评估了在手术后30天内使用非结构化数据检测再入院的影响。我们实施了两个基于规则的系统,以识别在后续电话转换中提到的再入院。我们根据两家医院的数据集评估了我们的系统。我们的评估显示,除了结构化数据外,使用非结构化数据可以提高两个数据集的灵敏度,从53%提高到81%,从66%提高到87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信