User Web Access Prediction Based On Web Services And User Profile

Karim Boudjebbour, Abdelkader Belkhir, El Bahi Toubal, Messaoud Rahim
{"title":"User Web Access Prediction Based On Web Services And User Profile","authors":"Karim Boudjebbour, Abdelkader Belkhir, El Bahi Toubal, Messaoud Rahim","doi":"10.1109/ICAASE56196.2022.9931578","DOIUrl":null,"url":null,"abstract":"With the growing use of web services in social networks, user behavior prediction for web access becomes significant and can minimize the perceived latency. The profile of the web user is an essential element in this prediction. However, this profile may contain several attributes that remain more or less significant and negatively influence this prediction. This paper presents a strategy for classifying web users and predicting their web services access behavior. The method uses neural networks as a database optimizer, removing irrelevant descriptors from the database using a new filtering technique called UPDS (User Profile Descriptors Selection), and as a classifier, with the predicted class representing the available web services. The proposed strategy appears to be promising, according to a case study.","PeriodicalId":206411,"journal":{"name":"2022 International Conference on Advanced Aspects of Software Engineering (ICAASE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Aspects of Software Engineering (ICAASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAASE56196.2022.9931578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing use of web services in social networks, user behavior prediction for web access becomes significant and can minimize the perceived latency. The profile of the web user is an essential element in this prediction. However, this profile may contain several attributes that remain more or less significant and negatively influence this prediction. This paper presents a strategy for classifying web users and predicting their web services access behavior. The method uses neural networks as a database optimizer, removing irrelevant descriptors from the database using a new filtering technique called UPDS (User Profile Descriptors Selection), and as a classifier, with the predicted class representing the available web services. The proposed strategy appears to be promising, according to a case study.
基于Web服务和用户配置文件的用户Web访问预测
随着web服务在社交网络中的使用越来越多,对web访问的用户行为预测变得非常重要,并且可以最大限度地减少感知延迟。在这种预测中,网络用户的个人资料是一个基本要素。然而,该概要文件可能包含几个属性,这些属性或多或少仍然很重要,并对该预测产生负面影响。提出了一种对web用户进行分类并预测其web服务访问行为的策略。该方法使用神经网络作为数据库优化器,使用一种称为UPDS(用户配置文件描述符选择)的新过滤技术从数据库中删除不相关的描述符,并使用预测的类表示可用的web服务作为分类器。根据一项案例研究,拟议的策略似乎很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信