Multi-Level Gazetteer-Free Geocoding

Sayali Kulkarni, Shailee Jain, Mohammad Javad Hosseini, Jason Baldridge, Eugene Ie, Li Zhang
{"title":"Multi-Level Gazetteer-Free Geocoding","authors":"Sayali Kulkarni, Shailee Jain, Mohammad Javad Hosseini, Jason Baldridge, Eugene Ie, Li Zhang","doi":"10.18653/v1/2021.splurobonlp-1.9","DOIUrl":null,"url":null,"abstract":"We present a multi-level geocoding model (MLG) that learns to associate texts to geographic coordinates. The Earth’s surface is represented using space-filling curves that decompose the sphere into a hierarchical grid. MLG balances classification granularity and accuracy by combining losses across multiple levels and jointly predicting cells at different levels simultaneously. It obtains large gains without any gazetteer metadata, demonstrating that it can effectively learn the connection between text spans and coordinates—and thus makes it a gazetteer-free geocoder. Furthermore, MLG obtains state-of-the-art results for toponym resolution on three English datasets without any dataset-specific tuning.","PeriodicalId":442464,"journal":{"name":"Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.splurobonlp-1.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present a multi-level geocoding model (MLG) that learns to associate texts to geographic coordinates. The Earth’s surface is represented using space-filling curves that decompose the sphere into a hierarchical grid. MLG balances classification granularity and accuracy by combining losses across multiple levels and jointly predicting cells at different levels simultaneously. It obtains large gains without any gazetteer metadata, demonstrating that it can effectively learn the connection between text spans and coordinates—and thus makes it a gazetteer-free geocoder. Furthermore, MLG obtains state-of-the-art results for toponym resolution on three English datasets without any dataset-specific tuning.
多层次无地名的地理编码
我们提出了一种学习将文本与地理坐标相关联的多层次地理编码模型(MLG)。地球表面用空间填充曲线表示,将球体分解成分层网格。MLG通过结合多个级别的损失和同时联合预测不同级别的细胞来平衡分类粒度和准确性。它在没有任何地名词典元数据的情况下获得了很大的收益,这表明它可以有效地学习文本跨度和坐标之间的联系,从而使它成为一个不需要地名词典的地理编码器。此外,MLG在没有任何特定于数据集的调优的情况下,在三个英语数据集上获得了最先进的地名解析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信