Точные решения некоторых задач теории упругости о равновесии неоднородной по ширине анизотропной полосы

В. И. Горбачев, В. В. Гулин
{"title":"Точные решения некоторых задач теории упругости о равновесии неоднородной по ширине анизотропной полосы","authors":"В. И. Горбачев, В. В. Гулин","doi":"10.36236/1999-7590-2021-13-3-4-120-126","DOIUrl":null,"url":null,"abstract":"В работе рассматривается плоская задача теории упругости для длинной, неоднородной по ширине полосы, находящейся в равновесии под действием «объёмных» нагрузок, а также нагрузок, распределённых на длинных сторонах. На торцах полосы нагрузки сводятся к векторам сил и моментов, приложенных в центре торцевых сечений. Задача решается в напряжениях, то есть искомые напряжения находятся из двух уравнений равновесия и одного уравнения совместности в напряжениях. Наряду с исходной задачей для неоднородной анизотропной полосы рассматривается точно такая же задача, только для однородной изотропной полосы (сопутствующая задача). Решение сопутствующей задачи существенно проще и во многих случаях получается в аналитическом виде. В настоящей работе показано, что напряжения в исходной задаче представляются в виде суммы сопутствующих напряжений и ряда по производным от сопутствующих напряжений. Коэффициенты при производных являются функциями тех же самых координат, что и компоненты тензора податливостей. Для них получены рекуррентные обыкновенные дифференциальные уравнения 4-го порядка, каждое из которых решается в общем виде. Получены точные решения нескольких задач об упругом равновесии длинной, неоднородной по ширине полосы.","PeriodicalId":317637,"journal":{"name":"COMPOSITES and NANOSTRUCTURES","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"COMPOSITES and NANOSTRUCTURES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36236/1999-7590-2021-13-3-4-120-126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

В работе рассматривается плоская задача теории упругости для длинной, неоднородной по ширине полосы, находящейся в равновесии под действием «объёмных» нагрузок, а также нагрузок, распределённых на длинных сторонах. На торцах полосы нагрузки сводятся к векторам сил и моментов, приложенных в центре торцевых сечений. Задача решается в напряжениях, то есть искомые напряжения находятся из двух уравнений равновесия и одного уравнения совместности в напряжениях. Наряду с исходной задачей для неоднородной анизотропной полосы рассматривается точно такая же задача, только для однородной изотропной полосы (сопутствующая задача). Решение сопутствующей задачи существенно проще и во многих случаях получается в аналитическом виде. В настоящей работе показано, что напряжения в исходной задаче представляются в виде суммы сопутствующих напряжений и ряда по производным от сопутствующих напряжений. Коэффициенты при производных являются функциями тех же самых координат, что и компоненты тензора податливостей. Для них получены рекуррентные обыкновенные дифференциальные уравнения 4-го порядка, каждое из которых решается в общем виде. Получены точные решения нескольких задач об упругом равновесии длинной, неоднородной по ширине полосы.
各向异性宽度不均匀平衡弹性理论的一些问题的精确解
在工作中,弹性理论的平坦目标是在长而不均匀的宽度下平衡的长而不均匀的带宽,以及长边的压力。在带宽的端端,负载与在端切中心施加的力和力矩矢量有关。问题是在应力中解决的,因此所需要的电压由两个平衡方程和一个应力方程组成。除了非均匀各向异性带的初始问题外,同样的问题也被考虑,只有均匀的各向异性带(伴随的问题)。相关问题的解决要简单得多,而且在许多情况下都是分析性的。本文显示,源代码中的电压是伴随电压和伴随电压导数的数值。导数系数是与应变张量组件相同的坐标系的函数。对他们来说,有四阶递归微分方程,每个微分方程都以一般形式解出来。关于弹性平衡的多个问题有精确的解决方案,长度和宽度各不相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信