Application of occupancy-interlinked inhabitant behavior variables for improved energy and load profiles modeling

Agnes Ramokone, O. Popoola, A. Awelewa
{"title":"Application of occupancy-interlinked inhabitant behavior variables for improved energy and load profiles modeling","authors":"Agnes Ramokone, O. Popoola, A. Awelewa","doi":"10.1109/PowerAfrica49420.2020.9219940","DOIUrl":null,"url":null,"abstract":"Most simulation tools replicate the deterministic physical behavior of households particularly in energy load with repeated typical patterns of occupants' activities and occupancy without reproducing the active occupancy and occupants' interactions within such households. In so doing, this imparts peak demand/energy inaccurate information as encountered worldwide and the exaggerated energy savings estimation undertaken by government and utilities. This study entails the performance assessment of an ANN-based approach with the application of occupancy-interlinked inhabitant behavior variables in residential households. The application of such variables reinforces the ANN model to handle uncertainty and volatility of data to ascertain adroit forecasting of energy load profiles. The model produced a good coefficient of determination ($R^{2}$) and correlation coefficient ($r$). This model is projected to contribute mostly to energy load profile modeling, energy, utilities and measurement, and verification exercise.","PeriodicalId":325937,"journal":{"name":"2020 IEEE PES/IAS PowerAfrica","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica49420.2020.9219940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most simulation tools replicate the deterministic physical behavior of households particularly in energy load with repeated typical patterns of occupants' activities and occupancy without reproducing the active occupancy and occupants' interactions within such households. In so doing, this imparts peak demand/energy inaccurate information as encountered worldwide and the exaggerated energy savings estimation undertaken by government and utilities. This study entails the performance assessment of an ANN-based approach with the application of occupancy-interlinked inhabitant behavior variables in residential households. The application of such variables reinforces the ANN model to handle uncertainty and volatility of data to ascertain adroit forecasting of energy load profiles. The model produced a good coefficient of determination ($R^{2}$) and correlation coefficient ($r$). This model is projected to contribute mostly to energy load profile modeling, energy, utilities and measurement, and verification exercise.
居住者行为变量在改进能源和负荷剖面建模中的应用
大多数模拟工具复制了家庭的确定性物理行为,特别是在能源负荷中,重复了住户活动和占用的典型模式,而没有再现此类家庭中的主动占用和住户互动。在这样做的过程中,这导致了世界各地遇到的峰值需求/能源不准确的信息,以及政府和公用事业公司所进行的夸大的能源节约估计。本研究采用基于人工神经网络的方法进行绩效评估,并在住宅家庭中应用居住相互关联的居民行为变量。这些变量的应用增强了人工神经网络模型处理数据的不确定性和波动性的能力,以确定能源负荷曲线的灵巧预测。模型产生了良好的决定系数($R^{2}$)和相关系数($R $)。该模型预计将主要用于能源负荷剖面建模、能源、公用事业和测量以及验证练习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信