IPD-Net: SO(3) Invariant Primitive Decompositional Network for 3D Point Clouds

R. Tabib, Nitishkumar Upasi, Tejas Anvekar, Dikshit Hegde, U. Mudenagudi
{"title":"IPD-Net: SO(3) Invariant Primitive Decompositional Network for 3D Point Clouds","authors":"R. Tabib, Nitishkumar Upasi, Tejas Anvekar, Dikshit Hegde, U. Mudenagudi","doi":"10.1109/CVPRW59228.2023.00274","DOIUrl":null,"url":null,"abstract":"In this paper, we propose IPD-Net: Invariant Primitive Decompositional Network, a SO(3) invariant framework for decomposition of a point cloud. The human cognitive system is able to identify and interpret familiar objects regardless of their orientation and abstraction. Recent research aims to bring this capability to machines for understanding the 3D world. In this work, we present a framework inspired by human cognition to decompose point clouds into four primitive 3D shapes (plane, cylinder, cone, and sphere) and enable machines to understand the objects irrespective of its orientations. We employ Implicit Invariant Features (IIF) to learn local geometric relations by implicitly representing the point cloud with enhanced geometric information invariant towards SO(3) rotations. We also use Spatial Rectification Unit (SRU) to extract invariant global signatures. We demonstrate the results of our proposed methodology for SO(3) invariant decomposition on TraceParts Dataset, and show the generalizability of proposed IPD-Net as plugin for downstream task on classification of point clouds. We compare the results of classification with state-of-the-art methods on benchmark dataset (ModelNet40).","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose IPD-Net: Invariant Primitive Decompositional Network, a SO(3) invariant framework for decomposition of a point cloud. The human cognitive system is able to identify and interpret familiar objects regardless of their orientation and abstraction. Recent research aims to bring this capability to machines for understanding the 3D world. In this work, we present a framework inspired by human cognition to decompose point clouds into four primitive 3D shapes (plane, cylinder, cone, and sphere) and enable machines to understand the objects irrespective of its orientations. We employ Implicit Invariant Features (IIF) to learn local geometric relations by implicitly representing the point cloud with enhanced geometric information invariant towards SO(3) rotations. We also use Spatial Rectification Unit (SRU) to extract invariant global signatures. We demonstrate the results of our proposed methodology for SO(3) invariant decomposition on TraceParts Dataset, and show the generalizability of proposed IPD-Net as plugin for downstream task on classification of point clouds. We compare the results of classification with state-of-the-art methods on benchmark dataset (ModelNet40).
IPD-Net: SO(3)三维点云不变原语分解网络
本文提出了一种用于点云分解的SO(3)不变框架IPD-Net: Invariant Primitive decomposition Network。人类的认知系统能够识别和解释熟悉的物体,而不管它们的方向和抽象。最近的研究旨在将这种能力引入机器,以理解3D世界。在这项工作中,我们提出了一个受人类认知启发的框架,将点云分解为四种原始3D形状(平面、圆柱体、锥体和球体),并使机器能够理解物体,而不考虑其方向。我们采用隐式不变特征(IIF)来学习局部几何关系,通过对SO(3)旋转的增强几何信息不变性隐式表示点云。我们还使用空间校正单元(SRU)来提取不变的全局特征。我们展示了我们提出的方法在TraceParts数据集上进行SO(3)不变分解的结果,并展示了所提出的IPD-Net作为点云分类下游任务插件的泛化性。我们将分类结果与最先进的方法在基准数据集(ModelNet40)上进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信