Cluster analysis via random partition distributions

D. B. Dahl, J. Andros, J. Carter
{"title":"Cluster analysis via random partition distributions","authors":"D. B. Dahl, J. Andros, J. Carter","doi":"10.1002/sam.11602","DOIUrl":null,"url":null,"abstract":"Hierarchical and k‐medoids clustering are deterministic clustering algorithms defined on pairwise distances. We use these same pairwise distances in a novel stochastic clustering procedure based on a probability distribution. We call our proposed method CaviarPD, a portmanteau from cluster analysis via random partition distributions. CaviarPD first samples clusterings from a distribution on partitions and then finds the best cluster estimate based on these samples using algorithms to minimize an expected loss. Using eight case studies, we show that our approach produces results as close to the truth as hierarchical and k‐medoids methods, and has the additional advantage of allowing for a probabilistic framework to assess clustering uncertainty. The method provides an intuitive graphical representation of clustering uncertainty through pairwise probabilities from partition samples. A software implementation of the method is available in the CaviarPD package for R.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hierarchical and k‐medoids clustering are deterministic clustering algorithms defined on pairwise distances. We use these same pairwise distances in a novel stochastic clustering procedure based on a probability distribution. We call our proposed method CaviarPD, a portmanteau from cluster analysis via random partition distributions. CaviarPD first samples clusterings from a distribution on partitions and then finds the best cluster estimate based on these samples using algorithms to minimize an expected loss. Using eight case studies, we show that our approach produces results as close to the truth as hierarchical and k‐medoids methods, and has the additional advantage of allowing for a probabilistic framework to assess clustering uncertainty. The method provides an intuitive graphical representation of clustering uncertainty through pairwise probabilities from partition samples. A software implementation of the method is available in the CaviarPD package for R.
通过随机分区分布进行聚类分析
分层聚类和k - medium聚类是基于两两距离定义的确定性聚类算法。我们在基于概率分布的一种新的随机聚类过程中使用这些相同的两两距离。我们将提出的方法称为CaviarPD,这是一个来自随机分区分布的聚类分析的合成词。CaviarPD首先从分区上的分布中采样聚类,然后使用最小化预期损失的算法基于这些样本找到最佳的聚类估计。通过八个案例研究,我们表明我们的方法产生的结果与分层方法和k - medoids方法一样接近事实,并且具有允许概率框架评估聚类不确定性的额外优势。该方法通过分区样本的成对概率提供了一个直观的聚类不确定性的图形表示。该方法的软件实现可在R的CaviarPD包中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信