Lower Bounds on Streaming Algorithms for Approximating the Length of the Longest Increasing Subsequence

A. Gál, Parikshit Gopalan
{"title":"Lower Bounds on Streaming Algorithms for Approximating the Length of the Longest Increasing Subsequence","authors":"A. Gál, Parikshit Gopalan","doi":"10.1137/090770801","DOIUrl":null,"url":null,"abstract":"We show that any deterministic data-stream algorithm that, makes a constant number of passes over the input and gives a constant, factor approximation of the length of the longest increasing subsequence in a sequence of length n must use space Omega(radicn). This proves a conjecture made by Gopalan, Jayram, Krauthgamer and Kumar |10| who proved a matching upper bound. Our results yield asymptotically tight tower bounds for all approximation factors, thus resolving the main open problem, from their paper. Our proof is based on analyzing a related communication problem and proving a direct sum type property for it.","PeriodicalId":197431,"journal":{"name":"48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/090770801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

We show that any deterministic data-stream algorithm that, makes a constant number of passes over the input and gives a constant, factor approximation of the length of the longest increasing subsequence in a sequence of length n must use space Omega(radicn). This proves a conjecture made by Gopalan, Jayram, Krauthgamer and Kumar |10| who proved a matching upper bound. Our results yield asymptotically tight tower bounds for all approximation factors, thus resolving the main open problem, from their paper. Our proof is based on analyzing a related communication problem and proving a direct sum type property for it.
近似最长递增子序列长度的流算法下界
我们表明,任何确定性数据流算法,在输入上进行常数次传递,并给出长度为n的序列中最长的递增子序列长度的常数因子近似值,必须使用空间Omega(radicn)。这证明了Gopalan, Jayram, Krauthgamer和Kumar[10]提出的一个猜想,他们证明了一个匹配的上界。我们的结果产生了所有近似因子的渐近紧塔界,从而解决了他们论文中主要的开放问题。我们的证明是基于分析一个相关的通信问题,并证明了它的一个直接和型性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信