Boundary Enhanced Semantic Segmentation for High Resolution Electron Microscope Images

Matthias Pollach, Felix Schiegg, Matthias Ludwig, A. Bette, Alois Knoll
{"title":"Boundary Enhanced Semantic Segmentation for High Resolution Electron Microscope Images","authors":"Matthias Pollach, Felix Schiegg, Matthias Ludwig, A. Bette, Alois Knoll","doi":"10.23919/eusipco55093.2022.9909919","DOIUrl":null,"url":null,"abstract":"This work proposes an automated semantic segmen-tation approach for high resolution scanning electron microscope images, which enables the detection of hardware Trojans and counterfeit integrated circuits. We evaluate state of the art segmentation approaches and leverage expert domain knowledge to propose a neural network architecture tailored for our use case. We further address the challenge of the limited availability of training images and evaluate which pre-trained encoder can be leveraged most effectively for the given use case. The proposed segmentation network uses expert domain knowledge to account for the importance of separating technology features on a fine-grain level by introducing a separate boundary stream. The test results compare our network to a baseline approach and to two state-of-the-art segmentation networks.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes an automated semantic segmen-tation approach for high resolution scanning electron microscope images, which enables the detection of hardware Trojans and counterfeit integrated circuits. We evaluate state of the art segmentation approaches and leverage expert domain knowledge to propose a neural network architecture tailored for our use case. We further address the challenge of the limited availability of training images and evaluate which pre-trained encoder can be leveraged most effectively for the given use case. The proposed segmentation network uses expert domain knowledge to account for the importance of separating technology features on a fine-grain level by introducing a separate boundary stream. The test results compare our network to a baseline approach and to two state-of-the-art segmentation networks.
高分辨率电子显微镜图像的边界增强语义分割
这项工作提出了一种用于高分辨率扫描电子显微镜图像的自动语义分割方法,该方法可以检测硬件木马和假冒集成电路。我们评估了最先进的分割方法,并利用专家领域的知识,为我们的用例提出了一个量身定制的神经网络架构。我们进一步解决了训练图像可用性有限的挑战,并评估了哪种预训练编码器可以最有效地用于给定的用例。所提出的分割网络通过引入单独的边界流,利用专家领域知识在细粒度水平上考虑了分离技术特征的重要性。测试结果将我们的网络与基线方法和两个最先进的分割网络进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信