Brief Announcement: Deterministic Massively Parallel Algorithms for Ruling Sets

Shreyas Pai, S. Pemmaraju
{"title":"Brief Announcement: Deterministic Massively Parallel Algorithms for Ruling Sets","authors":"Shreyas Pai, S. Pemmaraju","doi":"10.1145/3519270.3538472","DOIUrl":null,"url":null,"abstract":"In this paper we present a deterministic O(log log n)-round algorithm for the 2-ruling set problem in the Massively Parallel Computation model with Õ(n) memory; this algorithm also runs in O(log log n) rounds in the Congested Clique model. This is exponentially faster than the fastest known deterministic 2-ruling set algorithm for these models, which is simply the O(log Δ)-round deterministic Maximal Independent Set algorithm due to Czumaj, Davies, and Parter (SPAA 2020). Our result is obtained by derandomizing the 2-ruling set algorithm of Kothapalli and Pemmaraju (FSTTCS 2012).","PeriodicalId":182444,"journal":{"name":"Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3519270.3538472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a deterministic O(log log n)-round algorithm for the 2-ruling set problem in the Massively Parallel Computation model with Õ(n) memory; this algorithm also runs in O(log log n) rounds in the Congested Clique model. This is exponentially faster than the fastest known deterministic 2-ruling set algorithm for these models, which is simply the O(log Δ)-round deterministic Maximal Independent Set algorithm due to Czumaj, Davies, and Parter (SPAA 2020). Our result is obtained by derandomizing the 2-ruling set algorithm of Kothapalli and Pemmaraju (FSTTCS 2012).
简要公告:统治集的确定性大规模并行算法
本文针对具有Õ(n)内存的大规模并行计算模型中的2统治集问题,提出了一种确定性的O(log log n)轮算法;该算法在拥塞团模型中也运行O(log log n)轮。对于这些模型,这比已知最快的确定性2统治集算法要快得多,后者只是Czumaj, Davies和partner (SPAA 2020)提出的O(log Δ)轮确定性最大独立集算法。我们的结果是通过对Kothapalli和Pemmaraju (FSTTCS 2012)的2统治集算法进行非随机化得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信