Kernel Symmetry for Convolution Neural Networks

Munther A. Gdeisat, A. Desmal, Y. Moumouni, Z. Al-Aubaidy, A. Al Khodary, Asad Hindash, C. Wavegedara
{"title":"Kernel Symmetry for Convolution Neural Networks","authors":"Munther A. Gdeisat, A. Desmal, Y. Moumouni, Z. Al-Aubaidy, A. Al Khodary, Asad Hindash, C. Wavegedara","doi":"10.1109/ASET48392.2020.9118317","DOIUrl":null,"url":null,"abstract":"A convolution neural network (CNN) uses kernels to filter applied images. These kernels learn their coefficients' values during the training process, thus they do not possess any centrosymmetry. Hence, the phase responses for these kernels are neither zero-phase nor linear-phase. This technique adds a group delay distortion to the filtered images. In this paper, we constrain the values of the kernels' coefficients to be centrosymmetric. This scheme guarantees the prevention of any distortion in the filtered images. In the proposed method, the CNN trains all the kernel coefficients as normal. Then every two-centrosymmetric coefficients are set to their average. This does not affect much the accuracy of the CNN. The proposed algorithm may be used to improve images generated using generative adversarial networks (GAN), autoencoders, image segmentation, and all other algorithms that generate images or video using CNN. This point still requires further study.","PeriodicalId":237887,"journal":{"name":"2020 Advances in Science and Engineering Technology International Conferences (ASET)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Advances in Science and Engineering Technology International Conferences (ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASET48392.2020.9118317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A convolution neural network (CNN) uses kernels to filter applied images. These kernels learn their coefficients' values during the training process, thus they do not possess any centrosymmetry. Hence, the phase responses for these kernels are neither zero-phase nor linear-phase. This technique adds a group delay distortion to the filtered images. In this paper, we constrain the values of the kernels' coefficients to be centrosymmetric. This scheme guarantees the prevention of any distortion in the filtered images. In the proposed method, the CNN trains all the kernel coefficients as normal. Then every two-centrosymmetric coefficients are set to their average. This does not affect much the accuracy of the CNN. The proposed algorithm may be used to improve images generated using generative adversarial networks (GAN), autoencoders, image segmentation, and all other algorithms that generate images or video using CNN. This point still requires further study.
卷积神经网络的核对称性
卷积神经网络(CNN)使用核来过滤应用的图像。这些核在训练过程中学习它们的系数值,因此它们不具有任何中心对称性。因此,这些核的相位响应既不是零相位也不是线性相位。这种技术为过滤后的图像增加了一组延迟失真。在本文中,我们约束核系数的值是中心对称的。该方案保证了滤波后的图像不会失真。在该方法中,CNN按照正态训练所有核系数。然后将每个双中心对称系数设为平均值。这对CNN的准确性影响不大。所提出的算法可用于改进使用生成式对抗网络(GAN)、自动编码器、图像分割以及使用CNN生成图像或视频的所有其他算法生成的图像。这一点还需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信