Search strategies for hybrid search spaces

C. Gomes, B. Selman
{"title":"Search strategies for hybrid search spaces","authors":"C. Gomes, B. Selman","doi":"10.1109/TAI.1999.809823","DOIUrl":null,"url":null,"abstract":"Recently, there has been much interest in enhancing purely combinatorial formalisms with numerical information. For example, planning formalisms can be enriched by taking resource constraints and probabilistic information into account. The mixed integer programming (MIP) paradigm from operations research provides a natural tool for solving optimization problems that combine such numeric and non-numeric information. The MIP approach relies heavily on linear program relaxations and branch-and-bound search. This is in contrast with depth-first or iterative deepening strategies generally used in AI. We provide a detailed characterization of the structure of the underlying search spaces as explored by these search strategies. Our analysis indicates that the traditional approach of identifying dominating search strategies for a given problem domain is inadequate. We show that much can be gained from combining search strategies for solving hard MIP problems, thereby leveraging the strength of different search strategies regarding both the combinatorial and numeric components of the problem.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recently, there has been much interest in enhancing purely combinatorial formalisms with numerical information. For example, planning formalisms can be enriched by taking resource constraints and probabilistic information into account. The mixed integer programming (MIP) paradigm from operations research provides a natural tool for solving optimization problems that combine such numeric and non-numeric information. The MIP approach relies heavily on linear program relaxations and branch-and-bound search. This is in contrast with depth-first or iterative deepening strategies generally used in AI. We provide a detailed characterization of the structure of the underlying search spaces as explored by these search strategies. Our analysis indicates that the traditional approach of identifying dominating search strategies for a given problem domain is inadequate. We show that much can be gained from combining search strategies for solving hard MIP problems, thereby leveraging the strength of different search strategies regarding both the combinatorial and numeric components of the problem.
混合搜索空间的搜索策略
最近,人们对用数值信息增强纯组合形式很感兴趣。例如,可以通过考虑资源约束和概率信息来丰富规划形式化。运筹学中的混合整数规划(MIP)范式为解决结合了这些数值和非数值信息的优化问题提供了一种天然的工具。MIP方法很大程度上依赖于线性规划松弛和分支定界搜索。这与AI中通常使用的深度优先或迭代深化策略形成对比。我们提供了这些搜索策略所探索的底层搜索空间结构的详细特征。我们的分析表明,对于给定的问题域,传统的识别主导搜索策略的方法是不够的。我们表明,可以通过组合搜索策略来解决困难的MIP问题,从而在问题的组合和数值组件方面利用不同搜索策略的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信