Occlusion Robust Part-aware Object Classification through Part Attention and Redundant Features Suppression

Sohee Kim, Seungkyu Lee
{"title":"Occlusion Robust Part-aware Object Classification through Part Attention and Redundant Features Suppression","authors":"Sohee Kim, Seungkyu Lee","doi":"10.1145/3476124.3488647","DOIUrl":null,"url":null,"abstract":"In recent studies, object classification with deep convolutional neural networks has shown poor generalization with occluded objects due to the large variation of occlusion situations. We propose a part-aware deep learning approach for occlusion robust object classification. To demonstrate the robustness of the method to unseen occlusion, we train our network without occluded object samples in training and test it with diverse occlusion samples. Proposed method shows improved classification performance on CIFAR10, STL10, and vehicles from PASCAL3D+ datasets.","PeriodicalId":199099,"journal":{"name":"SIGGRAPH Asia 2021 Posters","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476124.3488647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent studies, object classification with deep convolutional neural networks has shown poor generalization with occluded objects due to the large variation of occlusion situations. We propose a part-aware deep learning approach for occlusion robust object classification. To demonstrate the robustness of the method to unseen occlusion, we train our network without occluded object samples in training and test it with diverse occlusion samples. Proposed method shows improved classification performance on CIFAR10, STL10, and vehicles from PASCAL3D+ datasets.
基于局部注意和冗余特征抑制的遮挡鲁棒局部感知目标分类
在最近的研究中,由于遮挡情况变化较大,深度卷积神经网络对遮挡物体的分类泛化能力较差。我们提出了一种局部感知的深度学习方法用于遮挡鲁棒目标分类。为了证明该方法对看不见的遮挡的鲁棒性,我们在训练中训练了没有遮挡物体样本的网络,并用不同遮挡样本对其进行了测试。该方法对PASCAL3D+数据集上的CIFAR10、STL10和车辆的分类性能均有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信