{"title":"Merging Nash Equilibrium Solution with Genetic Algorithm : The Game Genetic Algorithm","authors":"Massimo Orazio Spata, S. Rinaudo","doi":"10.4156/JCIT.VOL5.ISSUE9.1","DOIUrl":null,"url":null,"abstract":"In this paper, it has been integrated Nash Equilibrium solution of Game Theory with Genetic Algorithms (GA) to optimize performance of a job scheduler, in order to simulate topology and sizing of Analog Electrical Circuits simulation. We proposed a new method for performance problems solving of Genetic Algorithms applied to Electronic Design Automation (EDA) simulator tool optimization. This optimal solution process is formulated as a non-cooperative Game in order to solve GA performance problem more efficiently and effectively. For these reasons, it has been created a new integrated Algorithm named Game Genetic Algorithm (GGA). A flow chart of the algorithm is presented to investigate the feasibility of the above approach.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE9.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, it has been integrated Nash Equilibrium solution of Game Theory with Genetic Algorithms (GA) to optimize performance of a job scheduler, in order to simulate topology and sizing of Analog Electrical Circuits simulation. We proposed a new method for performance problems solving of Genetic Algorithms applied to Electronic Design Automation (EDA) simulator tool optimization. This optimal solution process is formulated as a non-cooperative Game in order to solve GA performance problem more efficiently and effectively. For these reasons, it has been created a new integrated Algorithm named Game Genetic Algorithm (GGA). A flow chart of the algorithm is presented to investigate the feasibility of the above approach.