RACOD

Mohammad Bakhshalipour, Seyed Borna Ehsani, Mohamad Qadri, Dominic Guri, M. Likhachev, Phillip B. Gibbons
{"title":"RACOD","authors":"Mohammad Bakhshalipour, Seyed Borna Ehsani, Mohamad Qadri, Dominic Guri, M. Likhachev, Phillip B. Gibbons","doi":"10.1145/3470496.3527383","DOIUrl":null,"url":null,"abstract":"RACOD is an algorithm/hardware co-design for mobile robot path planning. It consists of two main components: CODAcc, a hardware accelerator for collision detection; and RASExp, an algorithm extension for runahead path exploration. CODAcc uses a novel MapReduce-style hardware computational model and massively parallelizes individual collision checks. RASExp predicts future path explorations and proactively computes its collision status ahead of time, thereby overlapping multiple collision detections. By affording multiple cheap CODAcc accelerators and overlapping collision detections using RASExp, RACOD significantly accelerates planning for mobile robots operating in arbitrary environments. Evaluations of popular benchmarks show up to 41.4× (self-driving cars) and 34.3× (pilotless drones) speedup with less than 0.3% area overhead. While the performance is maximized when CODAcc and RASExp are used together, they can also be used individually. To illustrate, we evaluate CODAcc alone in the context of a stationary robotic arm and show that it improves performance by 3.4×--3.8×. Also, we evaluate RASExp alone on commodity many-core CPU and GPU platforms by implementing it purely in software and show that with 32/128 CPU/GPU threads, it accelerates the end-to-end planning time by 8.6×/2.9×.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

RACOD is an algorithm/hardware co-design for mobile robot path planning. It consists of two main components: CODAcc, a hardware accelerator for collision detection; and RASExp, an algorithm extension for runahead path exploration. CODAcc uses a novel MapReduce-style hardware computational model and massively parallelizes individual collision checks. RASExp predicts future path explorations and proactively computes its collision status ahead of time, thereby overlapping multiple collision detections. By affording multiple cheap CODAcc accelerators and overlapping collision detections using RASExp, RACOD significantly accelerates planning for mobile robots operating in arbitrary environments. Evaluations of popular benchmarks show up to 41.4× (self-driving cars) and 34.3× (pilotless drones) speedup with less than 0.3% area overhead. While the performance is maximized when CODAcc and RASExp are used together, they can also be used individually. To illustrate, we evaluate CODAcc alone in the context of a stationary robotic arm and show that it improves performance by 3.4×--3.8×. Also, we evaluate RASExp alone on commodity many-core CPU and GPU platforms by implementing it purely in software and show that with 32/128 CPU/GPU threads, it accelerates the end-to-end planning time by 8.6×/2.9×.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信