{"title":"A Fuzzy Logic Based Sentiment Classification","authors":"Sheeba J.I., K. Vivekanandan","doi":"10.5121/IJDKP.2014.4403","DOIUrl":null,"url":null,"abstract":"Sentiment classification aims to detect information such as opinions, explicit , implicit feelings expressed in text. The most existing approaches are able to detect either explicit expressions or implicit expressions of sentiments in the text separately. In this proposed framework it will detect both Implicit and Explicit expressions available in the meeting transcripts. It will classify the Positive, Negative, Neutral words and also identify the topic of the particular meeting transcripts by using fuzzy logic. This paper aims to add some additional features for improving the classification method. The quality of the sentiment classification is improved using proposed fuzzy logic framework .In this fuzzy logic it includes the features like Fuzzy rules and Fuzzy C-means algorithm.The quality of the output is evaluated using the parameters such as precision, recall, f-measure. Here Fuzzy C-means Clustering technique measured in terms of Purity and Entropy. The data set was validated using 10-fold cross validation method and observed 95% confidence interval between the accuracy values .Finally, the proposed fuzzy logic method produced more than 85 % accurate results and error rate is very less compared to existing sentiment classification techniques.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2014.4403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Sentiment classification aims to detect information such as opinions, explicit , implicit feelings expressed in text. The most existing approaches are able to detect either explicit expressions or implicit expressions of sentiments in the text separately. In this proposed framework it will detect both Implicit and Explicit expressions available in the meeting transcripts. It will classify the Positive, Negative, Neutral words and also identify the topic of the particular meeting transcripts by using fuzzy logic. This paper aims to add some additional features for improving the classification method. The quality of the sentiment classification is improved using proposed fuzzy logic framework .In this fuzzy logic it includes the features like Fuzzy rules and Fuzzy C-means algorithm.The quality of the output is evaluated using the parameters such as precision, recall, f-measure. Here Fuzzy C-means Clustering technique measured in terms of Purity and Entropy. The data set was validated using 10-fold cross validation method and observed 95% confidence interval between the accuracy values .Finally, the proposed fuzzy logic method produced more than 85 % accurate results and error rate is very less compared to existing sentiment classification techniques.