MATGAN: Unified GANs for Multimodal Attribute Transfer by Coarse-to-Fine Disentangling Representations

Xi Guo, Qiang Rao, Kun He, Fang Chen, Bing Yu, Bailan Feng, Jian Huang, Qin Yang
{"title":"MATGAN: Unified GANs for Multimodal Attribute Transfer by Coarse-to-Fine Disentangling Representations","authors":"Xi Guo, Qiang Rao, Kun He, Fang Chen, Bing Yu, Bailan Feng, Jian Huang, Qin Yang","doi":"10.1109/FAIML57028.2022.00030","DOIUrl":null,"url":null,"abstract":"Image attribute transfer aims to change an image to a target one with desired attributes. There are mainly two challenges for this task: multi-domain transfer and attribute-level multimodality. The first means editing multiple attributes using a single model and the second means diverse appearances for the target attribute. Existing methods cannot address the two problems simultaneously. Moreover, many works focus on image-level multimodality rather than attribute-level. In this paper, we propose a novel coarse-to-fine disentangling representation framework MATGAN to achieve Multimodal Attribute Transfer. In the coarse disentangling stage, we propose to embed images onto a content space and an attribute space for image-level multimodality. In the fine disentangling stage, we further disentangle the attribute space to bind with each attribute for attribute-level multimodal and multi-domain transfer. Extensive experiments demonstrate the effectiveness of our approach.","PeriodicalId":307172,"journal":{"name":"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAIML57028.2022.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image attribute transfer aims to change an image to a target one with desired attributes. There are mainly two challenges for this task: multi-domain transfer and attribute-level multimodality. The first means editing multiple attributes using a single model and the second means diverse appearances for the target attribute. Existing methods cannot address the two problems simultaneously. Moreover, many works focus on image-level multimodality rather than attribute-level. In this paper, we propose a novel coarse-to-fine disentangling representation framework MATGAN to achieve Multimodal Attribute Transfer. In the coarse disentangling stage, we propose to embed images onto a content space and an attribute space for image-level multimodality. In the fine disentangling stage, we further disentangle the attribute space to bind with each attribute for attribute-level multimodal and multi-domain transfer. Extensive experiments demonstrate the effectiveness of our approach.
基于粗到精解纠缠表示的多模态属性转移的统一gan
图像属性转换的目的是将图像转换为具有所需属性的目标图像。该任务主要面临两个挑战:多域迁移和属性级多模态。第一种方法意味着使用单个模型编辑多个属性,第二种方法意味着目标属性的不同外观。现有的方法不能同时解决这两个问题。此外,许多研究侧重于图像级多模态,而不是属性级多模态。本文提出了一种新的从粗到精的解纠缠表示框架MATGAN来实现多模态属性转移。在粗解纠缠阶段,我们提出将图像嵌入到图像级多模态的内容空间和属性空间中。在精细解纠缠阶段,进一步解纠缠属性空间,与每个属性绑定,实现属性级多模态和多域迁移。大量的实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信