Robustness of Neural Rankers to Typos: A Comparative Study

Shengyao Zhuang, Xinyu Mao, G. Zuccon
{"title":"Robustness of Neural Rankers to Typos: A Comparative Study","authors":"Shengyao Zhuang, Xinyu Mao, G. Zuccon","doi":"10.1145/3572960.3572981","DOIUrl":null,"url":null,"abstract":"Recent advances in passage retrieval have seen the introduction of pre-trained language models (PLMs) based neural rankers. While generally very effective, little attention has been paid to the robustness of these rankers. In this paper, we study the effectiveness of state-of-the-art PLM rankers in presence of typos in queries, as an indication of the rankers’ robustness. As of PLM rankers, we consider the two most promising directions explored in previous work: dense retrievers vs. sparse retrievers. We find that both types of rankers are very sensitive to queries with typos. We then apply an existing augmentation-based typos-aware training technique with the aim of creating typo-robust dense and sparse retrievers. We find that this simple technique only works for dense retrievers, while it hurts effectiveness when used on sparse retrievers.","PeriodicalId":106265,"journal":{"name":"Proceedings of the 26th Australasian Document Computing Symposium","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Australasian Document Computing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572960.3572981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent advances in passage retrieval have seen the introduction of pre-trained language models (PLMs) based neural rankers. While generally very effective, little attention has been paid to the robustness of these rankers. In this paper, we study the effectiveness of state-of-the-art PLM rankers in presence of typos in queries, as an indication of the rankers’ robustness. As of PLM rankers, we consider the two most promising directions explored in previous work: dense retrievers vs. sparse retrievers. We find that both types of rankers are very sensitive to queries with typos. We then apply an existing augmentation-based typos-aware training technique with the aim of creating typo-robust dense and sparse retrievers. We find that this simple technique only works for dense retrievers, while it hurts effectiveness when used on sparse retrievers.
神经排序器对错别字的鲁棒性比较研究
文章检索的最新进展是基于神经排序器的预训练语言模型(PLMs)的引入。虽然通常非常有效,但很少有人关注这些排名的鲁棒性。在本文中,我们研究了最先进的PLM排名器在查询中存在拼写错误时的有效性,作为排名器鲁棒性的指示。对于PLM排名器,我们认为在之前的工作中探索的两个最有前途的方向:密集检索器与稀疏检索器。我们发现这两种类型的排序器对有错别字的查询都非常敏感。然后,我们应用现有的基于增强的错别字感知训练技术,目的是创建错别字鲁棒的密集和稀疏检索器。我们发现这个简单的技术只适用于密集的寻回者,而在稀疏的寻回者上使用它会损害效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信