3D fiducials for scalable AR visual tracking

J. Steinbis, W. Hoff, T. Vincent
{"title":"3D fiducials for scalable AR visual tracking","authors":"J. Steinbis, W. Hoff, T. Vincent","doi":"10.1109/ISMAR.2008.4637357","DOIUrl":null,"url":null,"abstract":"A new vision and inertial pose estimation system was implemented for real-time handheld augmented reality (AR). A sparse set of 3D cone fiducials are utilized for scalable indoor/outdoor tracking, as opposed to traditional planar patterns. The cones are easy to segment and have a large working volume which makes them more suitable for many applications. The pose estimation system receives measurements from the camera and IMU at 30 Hz and 100 Hz respectively. With a dual-core workstation, all measurements can be processed in real-time to update the pose of virtual graphics within the AR display.","PeriodicalId":168134,"journal":{"name":"2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2008.4637357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A new vision and inertial pose estimation system was implemented for real-time handheld augmented reality (AR). A sparse set of 3D cone fiducials are utilized for scalable indoor/outdoor tracking, as opposed to traditional planar patterns. The cones are easy to segment and have a large working volume which makes them more suitable for many applications. The pose estimation system receives measurements from the camera and IMU at 30 Hz and 100 Hz respectively. With a dual-core workstation, all measurements can be processed in real-time to update the pose of virtual graphics within the AR display.
可扩展AR视觉跟踪的3D基准
实现了一种新的手持增强现实(AR)视觉和惯性姿态估计系统。一组稀疏的三维锥基准被用于可扩展的室内/室外跟踪,而不是传统的平面模式。锥体易于分割,具有较大的工作体积,这使得它们更适合于许多应用。姿态估计系统分别以30 Hz和100 Hz的频率接收来自相机和IMU的测量值。通过双核工作站,所有测量都可以实时处理,以更新AR显示器内虚拟图形的姿态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信