AIC2018 Report: Traffic Surveillance Research

Tingyu Mao, Wei Zhang, Haoyu He, Yanjun Lin, Vinay Kale, Alexander Stein, Z. Kostić
{"title":"AIC2018 Report: Traffic Surveillance Research","authors":"Tingyu Mao, Wei Zhang, Haoyu He, Yanjun Lin, Vinay Kale, Alexander Stein, Z. Kostić","doi":"10.1109/CVPRW.2018.00019","DOIUrl":null,"url":null,"abstract":"Traffic surveillance and management technologies are some of the most intriguing aspects of smart city applications. In this paper, we investigate and present the methods for vehicle detections, tracking, speed estimation and anomaly detection for NVIDIA AI City Challenge 2018 (AIC2018). We applied Mask-RCNN and deep-sort for vehicle detection and tracking in track 1, and optical flow based method in track 2. In track 1, we achieve 100% detection rate and 7.97 mile/hour estimation error for speed estimation.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Traffic surveillance and management technologies are some of the most intriguing aspects of smart city applications. In this paper, we investigate and present the methods for vehicle detections, tracking, speed estimation and anomaly detection for NVIDIA AI City Challenge 2018 (AIC2018). We applied Mask-RCNN and deep-sort for vehicle detection and tracking in track 1, and optical flow based method in track 2. In track 1, we achieve 100% detection rate and 7.97 mile/hour estimation error for speed estimation.
AIC2018报告:交通监控研究
交通监控和管理技术是智慧城市应用中最有趣的一些方面。在本文中,我们研究并介绍了NVIDIA AI城市挑战赛2018 (AIC2018)的车辆检测、跟踪、速度估计和异常检测方法。我们在轨道1中应用了Mask-RCNN和deep-sort进行车辆检测和跟踪,在轨道2中应用了基于光流的方法。在轨道1中,我们实现了100%的检测率和7.97英里/小时的速度估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信