Generating Minimal Nondeterministic Finite Automata Using a Parallel Algorithm

Tomasz Jastrząb, Z. Czech, Wojciech Wieczorek
{"title":"Generating Minimal Nondeterministic Finite Automata Using a Parallel Algorithm","authors":"Tomasz Jastrząb, Z. Czech, Wojciech Wieczorek","doi":"10.1109/ISPDC51135.2020.00015","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to develop a parallel algorithm that, on input of a learning sample, identifies a regular language by means of a nondeterministic finite automaton (NFA). A sample is a pair of finite sets containing positive and negative examples. Given a sample, a minimal NFA or the range of possible sizes of such an NFA, that represents the target regular language is sought. We define the task of finding an NFA, which accepts all positive examples and rejects all negative ones, as a constraint satisfaction problem, and then propose a parallel algorithm to solve the problem. The results of computational experiments on the variety of test samples are reported.","PeriodicalId":426824,"journal":{"name":"2020 19th International Symposium on Parallel and Distributed Computing (ISPDC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Symposium on Parallel and Distributed Computing (ISPDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC51135.2020.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to develop a parallel algorithm that, on input of a learning sample, identifies a regular language by means of a nondeterministic finite automaton (NFA). A sample is a pair of finite sets containing positive and negative examples. Given a sample, a minimal NFA or the range of possible sizes of such an NFA, that represents the target regular language is sought. We define the task of finding an NFA, which accepts all positive examples and rejects all negative ones, as a constraint satisfaction problem, and then propose a parallel algorithm to solve the problem. The results of computational experiments on the variety of test samples are reported.
用并行算法生成最小不确定性有限自动机
本文的目标是开发一种并行算法,该算法在学习样本的输入上,通过不确定性有限自动机(NFA)识别规则语言。样本是一对包含正样例和负样例的有限集。给定一个样本,寻找代表目标正则语言的最小NFA或这种NFA的可能大小范围。我们将寻找一个接受所有正例,拒绝所有负例的NFA任务定义为约束满足问题,并提出了一种并行算法来解决该问题。报道了各种试验样品的计算实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信