A clustering algorithm based on latent semantic model

Bu-Yu Wang, Mei-an Li, Yongjun Wang
{"title":"A clustering algorithm based on latent semantic model","authors":"Bu-Yu Wang, Mei-an Li, Yongjun Wang","doi":"10.1109/ICACIA.2009.5361155","DOIUrl":null,"url":null,"abstract":"In order to precisely procure the Chinese person information on the web, especially distinguish from the namesake, this paper propose a clustering algorithm based on latent semantic model. It establishes for every document a latent semantic model of sentence-word matrix based on central distance, central segment, document length, etc, by building the central word library of person attributes. It clusters the similar documents by means of dynamic-extending clustering algorithm. Experiments prove that the algorithm gives high accuracy to documents clustering as well as maintaining the coherence of the person's semantic information and highlighting the importance of semantic information under different sequences.","PeriodicalId":423210,"journal":{"name":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACIA.2009.5361155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to precisely procure the Chinese person information on the web, especially distinguish from the namesake, this paper propose a clustering algorithm based on latent semantic model. It establishes for every document a latent semantic model of sentence-word matrix based on central distance, central segment, document length, etc, by building the central word library of person attributes. It clusters the similar documents by means of dynamic-extending clustering algorithm. Experiments prove that the algorithm gives high accuracy to documents clustering as well as maintaining the coherence of the person's semantic information and highlighting the importance of semantic information under different sequences.
一种基于潜在语义模型的聚类算法
为了准确获取网络上的中国人信息,特别是区分人名,本文提出了一种基于潜在语义模型的聚类算法。通过构建人物属性中心词库,为每个文档建立基于中心距离、中心段、文档长度等的句词矩阵潜在语义模型。采用动态扩展聚类算法对相似文档进行聚类。实验证明,该算法在保持人物语义信息的一致性和突出不同序列下语义信息的重要性的同时,对文档聚类具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信