AHEAD: A Tool for Projecting Next-Generation Hardware Enhancements on GPU-Accelerated Systems

Hazem A. Abdelhafez, Christopher Zimmer, Sudharshan S. Vazhkudai, M. Ripeanu
{"title":"AHEAD: A Tool for Projecting Next-Generation Hardware Enhancements on GPU-Accelerated Systems","authors":"Hazem A. Abdelhafez, Christopher Zimmer, Sudharshan S. Vazhkudai, M. Ripeanu","doi":"10.1109/IPDPSW.2019.00103","DOIUrl":null,"url":null,"abstract":"Starting with the Titan supercomputer (at the Oak Ridge Leadership Computing Facility, OLCF) in 2012, top supercomputers have Increasingly leveraged the performance of GPUs to support large-scale computational science. The current No. 1 machine, the 200 petaflop Summit system at OLCF, is a GPU-based machine. Accelerator-based architectures, however, add additional complexity due to node heterogeneity. To inform procurement decisions, supercomputing centers need the tools to quickly model the impact of changes of the node architectures on application performance. We present AHEAD, a profiling and modeling tool to quantify the impact of intra-node communication mechanism (e.g., PCI or NVLink) on application performance. Our experiments show average weighted relative errors of ~19% and ~23% for five CORAL-2 (a collaboration between multiple US Department of Energy, DOE, labs to procure Exascale systems) and 12 Rodinia benchmarks respectively, without running the applications on the target future node.","PeriodicalId":292054,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2019.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Starting with the Titan supercomputer (at the Oak Ridge Leadership Computing Facility, OLCF) in 2012, top supercomputers have Increasingly leveraged the performance of GPUs to support large-scale computational science. The current No. 1 machine, the 200 petaflop Summit system at OLCF, is a GPU-based machine. Accelerator-based architectures, however, add additional complexity due to node heterogeneity. To inform procurement decisions, supercomputing centers need the tools to quickly model the impact of changes of the node architectures on application performance. We present AHEAD, a profiling and modeling tool to quantify the impact of intra-node communication mechanism (e.g., PCI or NVLink) on application performance. Our experiments show average weighted relative errors of ~19% and ~23% for five CORAL-2 (a collaboration between multiple US Department of Energy, DOE, labs to procure Exascale systems) and 12 Rodinia benchmarks respectively, without running the applications on the target future node.
未来:预测下一代gpu加速系统硬件增强的工具
从2012年的泰坦超级计算机(位于橡树岭领导计算设施,OLCF)开始,顶级超级计算机越来越多地利用gpu的性能来支持大规模的计算科学。目前排名第一的计算机是OLCF的200 petaflop Summit系统,这是一台基于gpu的计算机。然而,由于节点的异构性,基于加速器的体系结构增加了额外的复杂性。为了为采购决策提供信息,超级计算中心需要工具来快速模拟节点架构变化对应用程序性能的影响。我们提出了AHEAD,一个分析和建模工具来量化节点内通信机制(例如PCI或NVLink)对应用程序性能的影响。我们的实验显示,在没有在目标未来节点上运行应用程序的情况下,5个CORAL-2(美国能源部多个实验室合作采购Exascale系统)和12个Rodinia基准测试的平均加权相对误差分别为19%和23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信