{"title":"Data-Driven Application Maintenance: Experience from the Trenches","authors":"Janardan Misra, Shubhashis Sengupta, Divya Rawat, Milind Savagaonkar, Sanjay Podder","doi":"10.1109/ser-ip.2017..8","DOIUrl":null,"url":null,"abstract":"In this paper we present our experience during design, development, and pilot deployments of a data-driven machine learning based application maintenance solution. We implemented a proof of concept to address a spectrum of interrelated problems encountered in application maintenance projects including duplicate incident ticket identification, assignee recommendation, theme mining, and mapping of incidents to business processes. In the context of IT services, these problems are frequently encountered, yet there is a gap in bringing automation and optimization. Despite long-standing research around mining and analysis of software repositories, such research outputs are not adopted well in practice due to the constraints these solutions impose on the users. We discuss need for designing pragmatic solutions with low barriers to adoption and addressing right level of complexity of problems with respect to underlying business constraints and nature of data.","PeriodicalId":279970,"journal":{"name":"2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice (SER&IP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice (SER&IP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ser-ip.2017..8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper we present our experience during design, development, and pilot deployments of a data-driven machine learning based application maintenance solution. We implemented a proof of concept to address a spectrum of interrelated problems encountered in application maintenance projects including duplicate incident ticket identification, assignee recommendation, theme mining, and mapping of incidents to business processes. In the context of IT services, these problems are frequently encountered, yet there is a gap in bringing automation and optimization. Despite long-standing research around mining and analysis of software repositories, such research outputs are not adopted well in practice due to the constraints these solutions impose on the users. We discuss need for designing pragmatic solutions with low barriers to adoption and addressing right level of complexity of problems with respect to underlying business constraints and nature of data.