A Control Scheme for PMSMs using Model Predictive Control and a Feedforward Action in the Presence of Saturated Inputs

Tanja Zwerger, Paolo Mercorelli
{"title":"A Control Scheme for PMSMs using Model Predictive Control and a Feedforward Action in the Presence of Saturated Inputs","authors":"Tanja Zwerger, Paolo Mercorelli","doi":"10.1109/ICCC51557.2021.9454662","DOIUrl":null,"url":null,"abstract":"This contribution considers a control scheme consisting of Model Predictive Control (MPC) together with a feedforward control and a Maximal Torque per Ampere (MTPA) structure. The MTPA structure, which is in the outer loop of the control system, calculates the optimal direct and quadrature current from a given desired torque. This current represents the reference currents for the MPC which states the control loop. The MPC is adapted using a Dual Kalman Filter which estimates parameter of the electrical system in d-q coordinates. Simulations show the effectiveness of the proposed control scheme with respect to a standard PI controller in the presence of saturated inputs. In particular, simulated results in the presence of input saturations show that MPC is working without overshoot in the actual currents which leads to less needed power in the input. The reason of that is that the proposed MPC uses just an optimal proportional control and thus avoids windup effects. Nevertheless, using just a proportional action, a bias between the desired and obtained signal is present in the results.","PeriodicalId":339049,"journal":{"name":"2021 22nd International Carpathian Control Conference (ICCC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51557.2021.9454662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This contribution considers a control scheme consisting of Model Predictive Control (MPC) together with a feedforward control and a Maximal Torque per Ampere (MTPA) structure. The MTPA structure, which is in the outer loop of the control system, calculates the optimal direct and quadrature current from a given desired torque. This current represents the reference currents for the MPC which states the control loop. The MPC is adapted using a Dual Kalman Filter which estimates parameter of the electrical system in d-q coordinates. Simulations show the effectiveness of the proposed control scheme with respect to a standard PI controller in the presence of saturated inputs. In particular, simulated results in the presence of input saturations show that MPC is working without overshoot in the actual currents which leads to less needed power in the input. The reason of that is that the proposed MPC uses just an optimal proportional control and thus avoids windup effects. Nevertheless, using just a proportional action, a bias between the desired and obtained signal is present in the results.
基于模型预测控制和前馈控制的永磁同步电动机饱和输入控制方案
该贡献考虑了一种由模型预测控制(MPC)与前馈控制和最大转矩每安培(MTPA)结构组成的控制方案。MTPA结构位于控制系统的外环,根据给定的期望转矩计算出最优的直流和正交电流。该电流表示MPC的参考电流,MPC表示控制回路。MPC采用双卡尔曼滤波器,在d-q坐标系下估计电气系统的参数。仿真结果表明,在输入饱和的情况下,所提出的控制方案相对于标准PI控制器是有效的。特别是,在输入饱和情况下的模拟结果表明,MPC在实际电流中没有超调,从而导致输入所需功率减少。其原因是,所提出的MPC只使用最优比例控制,从而避免了清盘效应。然而,仅使用比例作用,结果中存在期望信号和获得信号之间的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信