MODEL SELECTION BASED ON QUASI-LIKELIHOOD WITH APPLICATION TO OVERDISPERSED DATA

Yiping Tang
{"title":"MODEL SELECTION BASED ON QUASI-LIKELIHOOD WITH APPLICATION TO OVERDISPERSED DATA","authors":"Yiping Tang","doi":"10.5183/JJSCS.1212002_204","DOIUrl":null,"url":null,"abstract":"In analyzing complicated data, we are often unwilling or not confident to impose a parametric model for the data-generating structure. One important example is data analysis for proportional or count data with overdispersion. The obvious advantage of assuming full parametric models is that one can resort to likelihood analyses, for instance, to use AIC or BIC to choose the most appropriate regression models. For overdispersed proportional data, possible parametric models include the Beta-binomial models, the double exponential models, etc. In this paper, we extend the generalized linear models by replacing the full parametric models with a finite number of moment restrictions on both the data and the structural parameters. For such semiparametric statistical models, we propose a method for selecting the best possible regression model in the semiparametric model class. We will apply the proposed model selection technique to overdispersed data. We will demonstrate the use of the proposed semiparametric information criterion using the well-known data on germination of Orobanche.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1212002_204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In analyzing complicated data, we are often unwilling or not confident to impose a parametric model for the data-generating structure. One important example is data analysis for proportional or count data with overdispersion. The obvious advantage of assuming full parametric models is that one can resort to likelihood analyses, for instance, to use AIC or BIC to choose the most appropriate regression models. For overdispersed proportional data, possible parametric models include the Beta-binomial models, the double exponential models, etc. In this paper, we extend the generalized linear models by replacing the full parametric models with a finite number of moment restrictions on both the data and the structural parameters. For such semiparametric statistical models, we propose a method for selecting the best possible regression model in the semiparametric model class. We will apply the proposed model selection technique to overdispersed data. We will demonstrate the use of the proposed semiparametric information criterion using the well-known data on germination of Orobanche.
基于准似然的模型选择及其在过分散数据中的应用
在分析复杂数据时,我们往往不愿意或没有信心对数据生成结构施加参数化模型。一个重要的例子是对具有过色散的比例或计数数据的数据分析。假设全参数模型的明显优势是,人们可以求助于似然分析,例如,使用AIC或BIC来选择最合适的回归模型。对于过分散的比例数据,可能的参数模型包括beta二项模型、双指数模型等。在本文中,我们通过在数据和结构参数上用有限个数的矩限制来代替全参数模型,从而扩展了广义线性模型。对于这类半参数统计模型,我们提出了一种在半参数模型类中选择最佳可能回归模型的方法。我们将提出的模型选择技术应用于过度分散的数据。我们将展示使用所提出的半参数信息准则,利用众所周知的数据萌发的Orobanche。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信