Multicategory classification using an Extreme Learning Machine for microarray gene expression cancer diagnosis

S. Santhosh Baboo, S. Sasikala
{"title":"Multicategory classification using an Extreme Learning Machine for microarray gene expression cancer diagnosis","authors":"S. Santhosh Baboo, S. Sasikala","doi":"10.1109/ICCCCT.2010.5670741","DOIUrl":null,"url":null,"abstract":"This paper deals with the advanced and developed methodology know for cancer multi classification using an Extreme Learning Machine (ELM) for microarray gene expression cancer diagnosis, this used for directing multicategory classification problems in the cancer diagnosis area. ELM avoids problems like local minima; improper learning rate and over fitting commonly faced by iterative learning methods and completes the training very fast. We have evaluated the multicategory0 classification performance of ELM on benchmark microarray data sets for cancer diagnosis, namely, the Lymphoma data set. The results indicate that ELM produces comparable or better classification accuracies with reduced training time and implementation complexity compared to artificial neural networks methods like conventional back-propagation ANN, Linder's SANN, and Support Vector Machine.","PeriodicalId":250834,"journal":{"name":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCCT.2010.5670741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper deals with the advanced and developed methodology know for cancer multi classification using an Extreme Learning Machine (ELM) for microarray gene expression cancer diagnosis, this used for directing multicategory classification problems in the cancer diagnosis area. ELM avoids problems like local minima; improper learning rate and over fitting commonly faced by iterative learning methods and completes the training very fast. We have evaluated the multicategory0 classification performance of ELM on benchmark microarray data sets for cancer diagnosis, namely, the Lymphoma data set. The results indicate that ELM produces comparable or better classification accuracies with reduced training time and implementation complexity compared to artificial neural networks methods like conventional back-propagation ANN, Linder's SANN, and Support Vector Machine.
微阵列基因表达癌症诊断的极端学习机多类别分类
本文讨论了利用极限学习机(ELM)进行微阵列基因表达癌症诊断的先进的癌症多分类方法,该方法用于指导癌症诊断领域的多分类问题。ELM避免了像局部最小值这样的问题;迭代学习方法普遍面临学习率不合理和过拟合等问题,训练完成速度非常快。我们已经评估了ELM在用于癌症诊断的基准微阵列数据集(即淋巴瘤数据集)上的多类别分类性能。结果表明,与传统的反向传播ANN、Linder’s SANN和支持向量机等人工神经网络方法相比,ELM在减少训练时间和实现复杂性的同时,产生了相当或更好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信