Remarks on an Edge-coloring Problem

Q3 Computer Science
Carlos Hoppen , Hanno Lefmann
{"title":"Remarks on an Edge-coloring Problem","authors":"Carlos Hoppen ,&nbsp;Hanno Lefmann","doi":"10.1016/j.entcs.2019.08.045","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a multicolored version of a problem that was originally proposed by Erdős and Rothschild. For positive integers <em>n</em> and <em>r</em>, we look for <em>n</em>-vertex graphs that admit the maximum number of <em>r</em>-edge-colorings with no copy of a triangle where exactly two colors appear. It turns out that for 2 ≤ <em>r</em> ≤ 12 colors and <em>n</em> sufficiently large, the complete bipartite graph on <em>n</em> vertices with balanced bipartition (the <em>n</em>-vertex Turán graph for the triangle) yields the largest number of such colorings, and this graph is unique with this property.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"346 ","pages":"Pages 511-521"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.045","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066119300969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6

Abstract

We consider a multicolored version of a problem that was originally proposed by Erdős and Rothschild. For positive integers n and r, we look for n-vertex graphs that admit the maximum number of r-edge-colorings with no copy of a triangle where exactly two colors appear. It turns out that for 2 ≤ r ≤ 12 colors and n sufficiently large, the complete bipartite graph on n vertices with balanced bipartition (the n-vertex Turán graph for the triangle) yields the largest number of such colorings, and this graph is unique with this property.

一个边着色问题的注释
我们考虑一个由Erdős和Rothschild最初提出的问题的多色版本。对于正整数n和r,我们寻找n顶点图,它允许最大数量的r边着色,而不复制恰好出现两种颜色的三角形。结果表明,当2≤r≤12种颜色且n足够大时,n顶点平衡双分的完全二部图(三角形的n顶点Turán图)产生的这种着色数量最多,并且该图具有该性质是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Notes in Theoretical Computer Science
Electronic Notes in Theoretical Computer Science Computer Science-Computer Science (all)
自引率
0.00%
发文量
0
期刊介绍: ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信