MinerLSD: Efficient Local Pattern Mining on Attributed Graphs

M. Atzmüller, H. Soldano, G. Santini, Dominique Bouthinon
{"title":"MinerLSD: Efficient Local Pattern Mining on Attributed Graphs","authors":"M. Atzmüller, H. Soldano, G. Santini, Dominique Bouthinon","doi":"10.1109/ICDMW.2018.00040","DOIUrl":null,"url":null,"abstract":"Local pattern mining on attributed graphs is an important and interesting research area combining ideas from network analysis and graph mining. In this paper, we present MinerLSD, a method for efficient local pattern mining on attributed graphs. In order to prevent the typical pattern explosion in pattern mining, we employ closed patterns for focusing pattern exploration. In addition, we exploit efficient techniques for pruning the pattern space: We adapt a local variant of the Modularity metric with optimistic estimates, and include graph abstractions. Our experiments on several standard datasets demonstrate the efficacy of our proposed novel method MinerLSD as an efficient method for local pattern mining on attributed graphs.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Local pattern mining on attributed graphs is an important and interesting research area combining ideas from network analysis and graph mining. In this paper, we present MinerLSD, a method for efficient local pattern mining on attributed graphs. In order to prevent the typical pattern explosion in pattern mining, we employ closed patterns for focusing pattern exploration. In addition, we exploit efficient techniques for pruning the pattern space: We adapt a local variant of the Modularity metric with optimistic estimates, and include graph abstractions. Our experiments on several standard datasets demonstrate the efficacy of our proposed novel method MinerLSD as an efficient method for local pattern mining on attributed graphs.
MinerLSD:高效的属性图局部模式挖掘
属性图的局部模式挖掘是结合网络分析和图挖掘思想的一个重要而有趣的研究领域。本文提出了一种基于属性图的高效局部模式挖掘方法MinerLSD。为了防止模式挖掘中出现典型的模式爆炸现象,我们采用封闭模式来集中模式探索。此外,我们利用有效的技术来修剪模式空间:我们采用乐观估计的模块化度量的局部变体,并包括图抽象。我们在几个标准数据集上的实验证明了我们提出的新方法MinerLSD作为一种有效的属性图局部模式挖掘方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信