New Refinement Strategies for Cartesian Abstractions

David Speck, Jendrik Seipp
{"title":"New Refinement Strategies for Cartesian Abstractions","authors":"David Speck, Jendrik Seipp","doi":"10.1609/icaps.v32i1.19819","DOIUrl":null,"url":null,"abstract":"Cartesian counterexample-guided abstraction refinement (CEGAR) yields strong heuristics for optimal classical planning. CEGAR repeatedly finds counterexamples, i.e., abstract plans that fail for the concrete task. Although there are usually many such abstract plans to choose from, the refinement strategy from previous work is to choose an arbitrary optimal one. In this work, we show that an informed refinement strategy is critical in theory and practice. We demonstrate that it is possible to execute all optimal abstract plans in the concrete task simultaneously, and present methods to minimize the time and number of refinement steps until we find a concrete solution. The resulting algorithm solves more tasks than the previous state of the art for Cartesian CEGAR, both during refinement and when used as a heuristic in an A* search.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cartesian counterexample-guided abstraction refinement (CEGAR) yields strong heuristics for optimal classical planning. CEGAR repeatedly finds counterexamples, i.e., abstract plans that fail for the concrete task. Although there are usually many such abstract plans to choose from, the refinement strategy from previous work is to choose an arbitrary optimal one. In this work, we show that an informed refinement strategy is critical in theory and practice. We demonstrate that it is possible to execute all optimal abstract plans in the concrete task simultaneously, and present methods to minimize the time and number of refinement steps until we find a concrete solution. The resulting algorithm solves more tasks than the previous state of the art for Cartesian CEGAR, both during refinement and when used as a heuristic in an A* search.
笛卡尔抽象的新细化策略
笛卡尔反例引导抽象细化(CEGAR)为最优经典规划提供了强大的启发式。CEGAR反复地寻找反例,也就是说,抽象的计划无法完成具体的任务。尽管通常有许多这样的抽象计划可供选择,但从以前的工作中得到的改进策略是选择一个任意的最优计划。在这项工作中,我们表明一个知情的细化策略在理论和实践中是至关重要的。我们证明了在具体任务中同时执行所有最优抽象计划是可能的,并提出了在找到具体解决方案之前最小化优化步骤的时间和数量的方法。所得到的算法解决的任务比以前的笛卡尔CEGAR技术解决的任务更多,无论是在改进过程中还是在a *搜索中用作启发式时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信