Efficient DOA Estimation for Coprime Array via Inverse Discrete Fourier Transform

Zongyu Zhang, Chengwei Zhou, Yujie Gu, Zhiguo Shi
{"title":"Efficient DOA Estimation for Coprime Array via Inverse Discrete Fourier Transform","authors":"Zongyu Zhang, Chengwei Zhou, Yujie Gu, Zhiguo Shi","doi":"10.1109/ICDSP.2018.8631705","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an inverse discrete Fourier transform (IDFT)-based direction-of-arrival (DOA) estimation algorithm for coprime array, where both DOAs and power of the sources can be efficiently estimated with an increased number of degrees-of-freedom. Specifically, the IDFT is generalized to realize the transformation between the defined angular-spatial domain and the spatial domain. With such a relationship, the IDFT is directly implemented on the second-order virtual signals characterized by the angular-spatial frequencies, and it is proved that both the DOAs and the sources power can be estimated from the resulting spatial response. Meanwhile, the window method and the zero-padding technique are sequentially incorporated to alleviate the spectral leakage and improve the estimation accuracy, respectively. The direct IDFT solution presents a remarkably reduced computational complexity as compared to the existing algorithms exploiting coprime array, and the simulation results validate the effectiveness of the proposed DOA estimation algorithm.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose an inverse discrete Fourier transform (IDFT)-based direction-of-arrival (DOA) estimation algorithm for coprime array, where both DOAs and power of the sources can be efficiently estimated with an increased number of degrees-of-freedom. Specifically, the IDFT is generalized to realize the transformation between the defined angular-spatial domain and the spatial domain. With such a relationship, the IDFT is directly implemented on the second-order virtual signals characterized by the angular-spatial frequencies, and it is proved that both the DOAs and the sources power can be estimated from the resulting spatial response. Meanwhile, the window method and the zero-padding technique are sequentially incorporated to alleviate the spectral leakage and improve the estimation accuracy, respectively. The direct IDFT solution presents a remarkably reduced computational complexity as compared to the existing algorithms exploiting coprime array, and the simulation results validate the effectiveness of the proposed DOA estimation algorithm.
基于离散傅里叶反变换的单素数阵DOA估计
本文提出了一种基于反离散傅立叶变换(IDFT)的互素数阵列的到达方向(DOA)估计算法,该算法可以有效地估计源的到达方向和功率,并增加了自由度。具体来说,将IDFT进行广义化,实现定义的角空间域与空间域之间的转换。利用这种关系,直接对以角空间频率为特征的二阶虚拟信号进行了IDFT,并证明了从空间响应中可以估计出doa和源功率。同时,通过引入窗法和零填充技术,分别缓解了光谱泄漏,提高了估计精度。直接IDFT解与利用协素数阵的现有算法相比,显著降低了计算复杂度,仿真结果验证了所提DOA估计算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信