Human Action Recognition Based on MOCAP Information Using Convolution Neural Networks

Earnest Paul Ijjina, C. Mohan
{"title":"Human Action Recognition Based on MOCAP Information Using Convolution Neural Networks","authors":"Earnest Paul Ijjina, C. Mohan","doi":"10.1109/ICMLA.2014.30","DOIUrl":null,"url":null,"abstract":"Human action recognition is an important component in semantic analysis of human behavior. In this paper, we propose an approach for human action recognition based on motion capture (MOCAP) information using convolutional neural networks (CNN). Distance based metrics computed from MOCAP information of only three human joints are used in the computation of features. The range and temporal variation of these distance metrics are considered in the design of features which are discriminative for action recognition. A convolutional neural network capable of recognizing local patterns is used to identify human actions from the temporal variation of these features, which are distorted due to the inconsistency in the execution of actions across observations and subjects. Experiments conducted on Berkeley MHAD dataset demonstrate the effectiveness of the proposed approach.","PeriodicalId":109606,"journal":{"name":"2014 13th International Conference on Machine Learning and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 13th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2014.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Human action recognition is an important component in semantic analysis of human behavior. In this paper, we propose an approach for human action recognition based on motion capture (MOCAP) information using convolutional neural networks (CNN). Distance based metrics computed from MOCAP information of only three human joints are used in the computation of features. The range and temporal variation of these distance metrics are considered in the design of features which are discriminative for action recognition. A convolutional neural network capable of recognizing local patterns is used to identify human actions from the temporal variation of these features, which are distorted due to the inconsistency in the execution of actions across observations and subjects. Experiments conducted on Berkeley MHAD dataset demonstrate the effectiveness of the proposed approach.
基于动作捕捉信息的卷积神经网络人体动作识别
人类行为识别是人类行为语义分析的重要组成部分。在本文中,我们提出了一种基于卷积神经网络(CNN)的动作捕捉(MOCAP)信息的人体动作识别方法。在特征的计算中,仅使用三个人体关节的动作捕捉信息计算的基于距离的度量。在特征设计中考虑了这些距离度量的范围和时间变化,这些特征对动作识别具有区别性。能够识别局部模式的卷积神经网络用于从这些特征的时间变化中识别人类行为,这些特征由于在观察和对象之间执行动作的不一致而被扭曲。在Berkeley MHAD数据集上进行的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信