Authenticating Video Feeds using Electric Network Frequency Estimation at the Edge

Deeraj Nagothu, Yu Chen, Alexander J. Aved, E. Blasch
{"title":"Authenticating Video Feeds using Electric Network Frequency Estimation at the Edge","authors":"Deeraj Nagothu, Yu Chen, Alexander J. Aved, E. Blasch","doi":"10.4108/eai.4-2-2021.168648","DOIUrl":null,"url":null,"abstract":"Large scale Internet of Video Things (IoVT) supports situation awareness for smart cities; however, the rapid development in artificial intelligence (AI) technologies enables fake video/audio streams and doctored images to fool smart city security operators. Authenticating visual/audio feeds becomes essential for safety and security, from which an Electric Network Frequency (ENF) signal collected from the power grid is a prominent authentication mechanism. This paper proposes an ENF-based Video Authentication method using steady Superpixels (EVAS). Video superpixels group the pixels with uniform intensities and textures to eliminate the impacts from the fluctuations in the ENF estimation. An extensive experimental study validated the effectiveness of the EVAS system. Aiming at the environments with interconnected surveillance camera systems at the edge powered by an electricity grid, the proposed EVAS system achieved the design goal of detecting dissimilarities in the image sequences. Received on 14 December 2020; accepted on 26 January 2021; published on 04 February 2021","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.4-2-2021.168648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Large scale Internet of Video Things (IoVT) supports situation awareness for smart cities; however, the rapid development in artificial intelligence (AI) technologies enables fake video/audio streams and doctored images to fool smart city security operators. Authenticating visual/audio feeds becomes essential for safety and security, from which an Electric Network Frequency (ENF) signal collected from the power grid is a prominent authentication mechanism. This paper proposes an ENF-based Video Authentication method using steady Superpixels (EVAS). Video superpixels group the pixels with uniform intensities and textures to eliminate the impacts from the fluctuations in the ENF estimation. An extensive experimental study validated the effectiveness of the EVAS system. Aiming at the environments with interconnected surveillance camera systems at the edge powered by an electricity grid, the proposed EVAS system achieved the design goal of detecting dissimilarities in the image sequences. Received on 14 December 2020; accepted on 26 January 2021; published on 04 February 2021
基于边缘网络频率估计的视频馈送认证
大规模视频物联网(IoVT)支持智慧城市的态势感知;然而,人工智能(AI)技术的快速发展使得虚假的视频/音频流和篡改的图像能够欺骗智慧城市安全运营商。对视频/音频馈电进行身份验证对于安全至关重要,从电网收集的电网频率(ENF)信号是一种重要的身份验证机制。提出了一种基于enf的稳定超像素(EVAS)视频认证方法。视频超像素将具有均匀强度和纹理的像素分组,以消除ENF估计波动的影响。一项广泛的实验研究验证了EVAS系统的有效性。针对电网供电的边缘监控摄像机系统相互连接的环境,提出的EVAS系统实现了图像序列不相似点检测的设计目标。2020年12月14日收到;2021年1月26日接受;于2021年2月4日发布
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信