The Machinery of Interaction

Beniamino Accattoli, Ugo Dal Lago, G. Vanoni
{"title":"The Machinery of Interaction","authors":"Beniamino Accattoli, Ugo Dal Lago, G. Vanoni","doi":"10.1145/3414080.3414108","DOIUrl":null,"url":null,"abstract":"This paper revisits the Interaction Abstract Machine (IAM), a machine based on Girard’s Geometry of Interaction, introduced by Mackie and Danos & Regnier. It is an unusual machine, not relying on environments, presented on linear logic proof nets, and whose soundness proof is convoluted and passes through various other formalisms. Here we provide a new direct proof of its correctness, based on a variant of Sands’s improvements, a natural notion of bisimulation. Moreover, our proof is carried out on a new presentation of the IAM, defined as a machine acting directly on λ-terms, rather than on linear logic proof nets.","PeriodicalId":328721,"journal":{"name":"Proceedings of the 22nd International Symposium on Principles and Practice of Declarative Programming","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Symposium on Principles and Practice of Declarative Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3414080.3414108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper revisits the Interaction Abstract Machine (IAM), a machine based on Girard’s Geometry of Interaction, introduced by Mackie and Danos & Regnier. It is an unusual machine, not relying on environments, presented on linear logic proof nets, and whose soundness proof is convoluted and passes through various other formalisms. Here we provide a new direct proof of its correctness, based on a variant of Sands’s improvements, a natural notion of bisimulation. Moreover, our proof is carried out on a new presentation of the IAM, defined as a machine acting directly on λ-terms, rather than on linear logic proof nets.
互动机制
本文回顾了由Mackie和Danos & Regnier提出的基于吉拉德交互几何的交互抽象机(IAM)。它是一个不寻常的机器,不依赖于环境,呈现在线性逻辑证明网络上,其可靠性证明是复杂的,并通过各种其他形式。在此,我们提供了一种新的直接证明其正确性的方法,基于Sands改进的一种变体,即双模拟的自然概念。此外,我们的证明是在IAM的新表示上进行的,定义为直接作用于λ项的机器,而不是线性逻辑证明网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信