{"title":"Torque ripple minimization in switched reluctance motors via bi-cubic spline interpolation","authors":"J. Moreira","doi":"10.1109/PESC.1992.254794","DOIUrl":null,"url":null,"abstract":"A method for minimizing the instantaneous torque ripple in switched reluctance (SR) machines is investigated and implemented. The method is based on estimating the instantaneous SR motor torque from the flux linkage versus current and rotor position characteristic curves via a bi-cubic spline interpolation. These coefficients are computed offline, stored in a given memory location of the control processor, and used by two routines that are capable of estimating the rotor position and electromagnetic torque from the phase voltages and currents. The estimated output torque is then compared to a constant reference value, and the result of this comparison drives a current regulator that generates the proper motor phase currents. The ripple minimization scheme is simple and does not require a very fast processor. Its feasibility is confirmed via simulation and some preliminary experimental results.<<ETX>>","PeriodicalId":402706,"journal":{"name":"PESC '92 Record. 23rd Annual IEEE Power Electronics Specialists Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PESC '92 Record. 23rd Annual IEEE Power Electronics Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESC.1992.254794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82
Abstract
A method for minimizing the instantaneous torque ripple in switched reluctance (SR) machines is investigated and implemented. The method is based on estimating the instantaneous SR motor torque from the flux linkage versus current and rotor position characteristic curves via a bi-cubic spline interpolation. These coefficients are computed offline, stored in a given memory location of the control processor, and used by two routines that are capable of estimating the rotor position and electromagnetic torque from the phase voltages and currents. The estimated output torque is then compared to a constant reference value, and the result of this comparison drives a current regulator that generates the proper motor phase currents. The ripple minimization scheme is simple and does not require a very fast processor. Its feasibility is confirmed via simulation and some preliminary experimental results.<>