GA neuro-fuzzy damping control system for UPFC to enhance power system transient stability

L. Khan, N. Ahmed, C. Lozano
{"title":"GA neuro-fuzzy damping control system for UPFC to enhance power system transient stability","authors":"L. Khan, N. Ahmed, C. Lozano","doi":"10.1109/INMIC.2003.1416727","DOIUrl":null,"url":null,"abstract":"A hybrid GA-neurofuzzy damping control system for a unified power flow controller (UPFC) is proposed to enhance the transient and dynamic stability of a power system. The neurofuzzy damping controller is configured by employing a five layer feedforward fuzzy neural network. A novel \"grandparenting\" technique is employed for seeding the initial population to hasten the convergence speed of micro-GA. Also, a parallel micro-GA scheme is used to speed up the genetic algorithm search-space surfing process. The performance of the resulting neurofuzzy-based UPFC is validated in a multi-machine power system environment by means of digital simulation.","PeriodicalId":253329,"journal":{"name":"7th International Multi Topic Conference, 2003. INMIC 2003.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Multi Topic Conference, 2003. INMIC 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2003.1416727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A hybrid GA-neurofuzzy damping control system for a unified power flow controller (UPFC) is proposed to enhance the transient and dynamic stability of a power system. The neurofuzzy damping controller is configured by employing a five layer feedforward fuzzy neural network. A novel "grandparenting" technique is employed for seeding the initial population to hasten the convergence speed of micro-GA. Also, a parallel micro-GA scheme is used to speed up the genetic algorithm search-space surfing process. The performance of the resulting neurofuzzy-based UPFC is validated in a multi-machine power system environment by means of digital simulation.
基于遗传算法的UPFC神经模糊阻尼控制系统提高电力系统暂态稳定性
为了提高电力系统的暂态和动态稳定性,提出了一种用于统一潮流控制器(UPFC)的ga -神经模糊混合阻尼控制系统。采用五层前馈模糊神经网络配置神经模糊阻尼控制器。为了提高微遗传算法的收敛速度,采用了一种新的“祖父母式”技术来播种初始种群。同时,采用并行微遗传算法加快了遗传算法的搜索空间冲浪过程。通过数字仿真,在多机电力系统环境中验证了基于神经模糊的UPFC的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信