Felix Juefei-Xu, Khoa Luu, M. Savvides, T. D. Bui, C. Suen
{"title":"Investigating age invariant face recognition based on periocular biometrics","authors":"Felix Juefei-Xu, Khoa Luu, M. Savvides, T. D. Bui, C. Suen","doi":"10.1109/IJCB.2011.6117600","DOIUrl":null,"url":null,"abstract":"In this paper, we will present a novel framework of utilizing periocular region for age invariant face recognition. To obtain age invariant features, we first perform preprocessing schemes, such as pose correction, illumination and periocular region normalization. And then we apply robust Walsh-Hadamard transform encoded local binary patterns (WLBP) on preprocessed periocular region only. We find the WLBP feature on periocular region maintains consistency of the same individual across ages. Finally, we use unsupervised discriminant projection (UDP) to build subspaces on WLBP featured periocular images and gain 100% rank-1 identification rate and 98% verification rate at 0.1% false accept rate on the entire FG-NET database. Compared to published results, our proposed approach yields the best recognition and identification results.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"162","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 162
Abstract
In this paper, we will present a novel framework of utilizing periocular region for age invariant face recognition. To obtain age invariant features, we first perform preprocessing schemes, such as pose correction, illumination and periocular region normalization. And then we apply robust Walsh-Hadamard transform encoded local binary patterns (WLBP) on preprocessed periocular region only. We find the WLBP feature on periocular region maintains consistency of the same individual across ages. Finally, we use unsupervised discriminant projection (UDP) to build subspaces on WLBP featured periocular images and gain 100% rank-1 identification rate and 98% verification rate at 0.1% false accept rate on the entire FG-NET database. Compared to published results, our proposed approach yields the best recognition and identification results.