Parallel and cascaded deep neural networks for text-to-speech synthesis

M. Ribeiro, O. Watts, J. Yamagishi
{"title":"Parallel and cascaded deep neural networks for text-to-speech synthesis","authors":"M. Ribeiro, O. Watts, J. Yamagishi","doi":"10.21437/SSW.2016-17","DOIUrl":null,"url":null,"abstract":"An investigation of cascaded and parallel deep neural networks for speech synthesis is conducted. In these systems, suprasegmental linguistic features (syllable-level and above) are processed separately from segmental features (phone-level and below). The suprasegmental component of the networks learns compact distributed representations of high-level linguistic units without any segmental influence. These representations are then integrated into a frame-level system using a cascaded or a parallel approach. In the cascaded network, suprasegmental representations are used as input to the framelevel network. In the parallel network, segmental and suprasegmental features are processed separately and concatenated at a later stage. These experiments are conducted with a standard set of high-dimensional linguistic features as well as a hand-pruned one. It is observed that hierarchical systems are consistently preferred over the baseline feedforward systems. Similarly, parallel networks are preferred over cascaded networks.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SSW.2016-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

An investigation of cascaded and parallel deep neural networks for speech synthesis is conducted. In these systems, suprasegmental linguistic features (syllable-level and above) are processed separately from segmental features (phone-level and below). The suprasegmental component of the networks learns compact distributed representations of high-level linguistic units without any segmental influence. These representations are then integrated into a frame-level system using a cascaded or a parallel approach. In the cascaded network, suprasegmental representations are used as input to the framelevel network. In the parallel network, segmental and suprasegmental features are processed separately and concatenated at a later stage. These experiments are conducted with a standard set of high-dimensional linguistic features as well as a hand-pruned one. It is observed that hierarchical systems are consistently preferred over the baseline feedforward systems. Similarly, parallel networks are preferred over cascaded networks.
用于文本到语音合成的并行和级联深度神经网络
研究了用于语音合成的级联和并行深度神经网络。在这些系统中,超音段语言特征(音节级及以上)与音段特征(音素级及以下)分开处理。网络的超分段组件学习高级语言单元的紧凑分布表示,而不受任何分段影响。然后使用级联或并行方法将这些表示集成到帧级系统中。在级联网络中,超分段表示被用作帧级网络的输入。在并行网络中,分段特征和超分段特征分别进行处理,并在后期进行连接。这些实验是用一组标准的高维语言特征和手工修剪的语言特征进行的。可以观察到,分层系统始终优于基线前馈系统。类似地,并行网络优于级联网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信