Extended Dissipativity Analysis of Delayed Memristive Neural Networks Based on A Parameter-Dependent Lyapunov Functional

Chengda Lu, Xianming Zhang, Min Wu, Q. Han, Yong He
{"title":"Extended Dissipativity Analysis of Delayed Memristive Neural Networks Based on A Parameter-Dependent Lyapunov Functional","authors":"Chengda Lu, Xianming Zhang, Min Wu, Q. Han, Yong He","doi":"10.1109/ANZCC.2018.8606585","DOIUrl":null,"url":null,"abstract":"This paper is concerned with extended dissipativity analysis of memristive neural networks with time-varying delays. Using the characteristic function technique, a tractable model of a memristive neural network is obtained. This model is similar to a neural network with polytopic uncertain synaptic weights, enabling us to construct a parameter-dependent Lyapunov functional. By combining this functional and some integral inequalities, a novel extended dissipativity criterion is obtained in terms of linear-matrix-inequalities, where different Lyapunov matrices are used for each form of the memristive neural network. Through a numerical example, this criterion is shown to be less conservative than the one based on a common Lyapunov functional.","PeriodicalId":358801,"journal":{"name":"2018 Australian & New Zealand Control Conference (ANZCC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2018.8606585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with extended dissipativity analysis of memristive neural networks with time-varying delays. Using the characteristic function technique, a tractable model of a memristive neural network is obtained. This model is similar to a neural network with polytopic uncertain synaptic weights, enabling us to construct a parameter-dependent Lyapunov functional. By combining this functional and some integral inequalities, a novel extended dissipativity criterion is obtained in terms of linear-matrix-inequalities, where different Lyapunov matrices are used for each form of the memristive neural network. Through a numerical example, this criterion is shown to be less conservative than the one based on a common Lyapunov functional.
基于参数相关Lyapunov泛函的延迟记忆神经网络扩展耗散分析
本文研究了时变时滞记忆神经网络的扩展耗散性分析。利用特征函数技术,得到了记忆神经网络的易处理模型。该模型类似于具有多面体不确定突触权重的神经网络,使我们能够构建参数相关的Lyapunov泛函。通过将该泛函不等式与一些积分不等式相结合,得到了线性矩阵不等式的一种新的扩展耗散判据,其中每种形式的记忆神经网络使用不同的李雅普诺夫矩阵。通过数值算例表明,该准则比基于普通Lyapunov泛函的准则具有更小的保守性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信