Reconstructing a finite length sequence from several of its correlation lags

A. Steinhardt
{"title":"Reconstructing a finite length sequence from several of its correlation lags","authors":"A. Steinhardt","doi":"10.1109/ICASSP.1987.1169415","DOIUrl":null,"url":null,"abstract":"In this paper we present an algorithm which answers the following question: Given a finite number of correlation lags, what is the shortest length sequence which could have produced these correlations? This question is equivalent to asking for the minimum order moving average (all-zero) model which can match a given set of correlations. The algorithm applies to both the case of uniform correlations and missing lag correlations. The algorithm involves quadratic programming coupled with a new representation of the boundary of correlations derived from finite sequences in terms of the spectral decomposition of a certain class of banded Toeplitz matrices.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present an algorithm which answers the following question: Given a finite number of correlation lags, what is the shortest length sequence which could have produced these correlations? This question is equivalent to asking for the minimum order moving average (all-zero) model which can match a given set of correlations. The algorithm applies to both the case of uniform correlations and missing lag correlations. The algorithm involves quadratic programming coupled with a new representation of the boundary of correlations derived from finite sequences in terms of the spectral decomposition of a certain class of banded Toeplitz matrices.
利用相关滞后重构有限长度序列
在本文中,我们提出了一种算法,它回答了以下问题:给定有限数量的相关滞后,可以产生这些相关性的最短长度序列是什么?这个问题相当于要求最小订单移动平均(全零)模型,该模型可以匹配给定的一组相关性。该算法适用于均匀相关和缺失滞后相关的情况。该算法涉及二次规划,并结合一类带状Toeplitz矩阵的谱分解来表示有限序列的关联边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信