Particle Swarm optimization with velocity restriction and evolutionary parameters selection for scheduling problem

P. Matrenin, V. Sekaev
{"title":"Particle Swarm optimization with velocity restriction and evolutionary parameters selection for scheduling problem","authors":"P. Matrenin, V. Sekaev","doi":"10.1109/sibcon.2015.7147143","DOIUrl":null,"url":null,"abstract":"The article presents a study of the Particle Swarm optimization method for scheduling problem. To improve the method's performance a restriction of particles' velocity and an evolutionary meta-optimization were realized. The approach proposed uses the Genetic algorithms for selection of the parameters of Particle Swarm optimization. Experiments were carried out on test tasks of the job-shop scheduling problem. This research proves the applicability of the approach and shows the importance of tuning the behavioral parameters of the swarm intelligence methods to achieve a high performance.","PeriodicalId":395729,"journal":{"name":"2015 International Siberian Conference on Control and Communications (SIBCON)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sibcon.2015.7147143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The article presents a study of the Particle Swarm optimization method for scheduling problem. To improve the method's performance a restriction of particles' velocity and an evolutionary meta-optimization were realized. The approach proposed uses the Genetic algorithms for selection of the parameters of Particle Swarm optimization. Experiments were carried out on test tasks of the job-shop scheduling problem. This research proves the applicability of the approach and shows the importance of tuning the behavioral parameters of the swarm intelligence methods to achieve a high performance.
基于速度约束和进化参数选择的粒子群优化调度问题
研究了求解调度问题的粒子群优化方法。为了提高该方法的性能,实现了粒子速度限制和演化元优化。该方法采用遗传算法对粒子群优化参数进行选择。对车间作业调度问题的测试任务进行了实验。该研究证明了该方法的适用性,并表明调整群体智能方法的行为参数对于实现高性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信