High Performance Preconditioning

H. A. Vorst
{"title":"High Performance Preconditioning","authors":"H. A. Vorst","doi":"10.1137/0910071","DOIUrl":null,"url":null,"abstract":"The discretization of second-order elliptic partial differential equations over three-dimensional rectangular regions, in general, leads to very large sparse linear systems. Because of their huge order and their sparseness, these systems can only be solved by iterative methods using powerful computers, e.g., vector supercomputers. Most of those methods are only attractive when used in combination with a so-called preconditioning matrix. Unfortunately, the more effective preconditioners, such as successive over-relaxation and incomplete decompositions, do not perform very well on most vector computers if used in a straightforward manner. In this paper it is shown how a rather high performance can be achieved for these preconditioners.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"169","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 169

Abstract

The discretization of second-order elliptic partial differential equations over three-dimensional rectangular regions, in general, leads to very large sparse linear systems. Because of their huge order and their sparseness, these systems can only be solved by iterative methods using powerful computers, e.g., vector supercomputers. Most of those methods are only attractive when used in combination with a so-called preconditioning matrix. Unfortunately, the more effective preconditioners, such as successive over-relaxation and incomplete decompositions, do not perform very well on most vector computers if used in a straightforward manner. In this paper it is shown how a rather high performance can be achieved for these preconditioners.
高性能预处理
二阶椭圆型偏微分方程在三维矩形区域上的离散化,通常会得到非常大的稀疏线性系统。由于它们的巨大顺序和稀疏性,这些系统只能通过使用强大的计算机(例如向量超级计算机)的迭代方法来求解。大多数这些方法只有在与所谓的预处理矩阵结合使用时才有吸引力。不幸的是,更有效的预处理,如连续过度松弛和不完全分解,如果以直接的方式使用,在大多数矢量计算机上表现不佳。本文展示了如何使这些预调节器达到相当高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信