Fractional-Order Impedance Control Design for Robot Manipulator

Xiaolian Liu, Shaohua Wang, Ying Luo
{"title":"Fractional-Order Impedance Control Design for Robot Manipulator","authors":"Xiaolian Liu, Shaohua Wang, Ying Luo","doi":"10.1115/detc2021-71936","DOIUrl":null,"url":null,"abstract":"\n In order to make robot manipulators work more compliantly when contacting with the environment, it is necessary to reduce the contact force caused by positioning errors. One effective way to solve this problem is impedance control, which makes the robot manipulator a second-order mass-spring-damping system in principle. In this paper, a position-based fractional-order impedance control design method is proposed for the robot manipulator force control. The end-effector/environment contact model is established, and the closed-loop system is analyzed with the reference force as input. A fractional-order impedance parameters design method is proposed for better force-control performance, which calculates and optimizes parameters through frequency-domain specifications (i.e., phase margin and gain crossover frequency) and time-domain specification (i.e., the minimum JITSE). With the Robotics ToolBox for MATLAB (RTB), the performance comparison between integer-order and fractional-order impedance controls is illustrated in simulation. The fractional-order impedance control system has a faster response, smaller overshoot, and better resistance to external disturbances from the environment.","PeriodicalId":221388,"journal":{"name":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-71936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In order to make robot manipulators work more compliantly when contacting with the environment, it is necessary to reduce the contact force caused by positioning errors. One effective way to solve this problem is impedance control, which makes the robot manipulator a second-order mass-spring-damping system in principle. In this paper, a position-based fractional-order impedance control design method is proposed for the robot manipulator force control. The end-effector/environment contact model is established, and the closed-loop system is analyzed with the reference force as input. A fractional-order impedance parameters design method is proposed for better force-control performance, which calculates and optimizes parameters through frequency-domain specifications (i.e., phase margin and gain crossover frequency) and time-domain specification (i.e., the minimum JITSE). With the Robotics ToolBox for MATLAB (RTB), the performance comparison between integer-order and fractional-order impedance controls is illustrated in simulation. The fractional-order impedance control system has a faster response, smaller overshoot, and better resistance to external disturbances from the environment.
机器人机械手的分数阶阻抗控制设计
为了使机器人机械手在与环境接触时更加柔顺地工作,需要减小定位误差带来的接触力。阻抗控制是解决这一问题的一种有效方法,它使机械臂原则上成为一个二阶质量-弹簧-阻尼系统。本文提出了一种基于位置的分数阶阻抗控制设计方法,用于机器人机械手的力控制。建立了末端执行器/环境接触模型,并以参考力为输入对闭环系统进行了分析。为了提高力控性能,提出了分数阶阻抗参数设计方法,通过频域指标(即相位裕度和增益交叉频率)和时域指标(即最小JITSE)对参数进行计算和优化。利用MATLAB机器人工具箱(RTB)对整阶和分数阶阻抗控制的性能进行了仿真比较。分数阶阻抗控制系统具有响应速度快、超调量小、抗外界干扰能力强等特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信