Poster: Cuckoo Filters for Two-Hop Neighbor Management in Vehicular Networks

Simon Welzel, F. Dressler, Florian Klingler
{"title":"Poster: Cuckoo Filters for Two-Hop Neighbor Management in Vehicular Networks","authors":"Simon Welzel, F. Dressler, Florian Klingler","doi":"10.1109/VNC57357.2023.10136341","DOIUrl":null,"url":null,"abstract":"Neighbor management in vehicular networks comes with the risk of unnecessarily overloading the wireless channel, particularly when two-hop neighbor information is required. A possible solution to this challenge is the use of probabilistic data structures. In our previous work, we explored the benefits of using Bloom filters for maintaining this neighbor information showing promising results. In this paper, we now evaluate the usage of a additional probabilistic data structure, the Cuckoo Filter, which is advertised as a superior alternative to Bloom filter. We assess the performance of the Cuckoo approach in a vehicular networking scenario and find that it does not meet these expectations. In fact, it may lead to worse performance in specific configurations.","PeriodicalId":185840,"journal":{"name":"2023 IEEE Vehicular Networking Conference (VNC)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC57357.2023.10136341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neighbor management in vehicular networks comes with the risk of unnecessarily overloading the wireless channel, particularly when two-hop neighbor information is required. A possible solution to this challenge is the use of probabilistic data structures. In our previous work, we explored the benefits of using Bloom filters for maintaining this neighbor information showing promising results. In this paper, we now evaluate the usage of a additional probabilistic data structure, the Cuckoo Filter, which is advertised as a superior alternative to Bloom filter. We assess the performance of the Cuckoo approach in a vehicular networking scenario and find that it does not meet these expectations. In fact, it may lead to worse performance in specific configurations.
海报:杜鹃滤波器在车辆网络中的两跳邻居管理
车辆网络中的邻居管理带来了不必要的无线信道过载的风险,特别是当需要两跳邻居信息时。应对这一挑战的一个可能的解决方案是使用概率数据结构。在我们之前的工作中,我们探索了使用Bloom过滤器来维护这个邻居信息的好处,显示了令人满意的结果。在本文中,我们现在评估一种额外的概率数据结构的使用,布谷鸟过滤器,它被宣传为比布隆过滤器更好的选择。我们评估了布谷鸟方法在汽车网络场景中的性能,发现它不符合这些期望。实际上,在特定配置中,它可能会导致更差的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信