{"title":"RePRAM: Re-cycling PRAM faulty blocks for extended lifetime","authors":"Jie Chen, Guru Venkataramani, H. H. Huang","doi":"10.1109/DSN.2012.6263950","DOIUrl":null,"url":null,"abstract":"As main memory systems begin to face the scaling challenges from DRAM technology, future computer systems need to adapt to the emerging memory technologies like Phase-Change Memory (PCM or PRAM). While these newer technologies offer advantages such as storage density, non-volatility, and low energy consumption, they are constrained by limited write endurance that becomes more pronounced with process variation. In this paper, we propose a novel PRAM-based main memory system, RePRAM (Recycling PRAM), which leverages a group of faulty pages and recycles them in a managed way to significantly extend the PRAM lifetime while minimizing the performance impact. In particular, we explore two different dimensions of dynamic redundancy levels and group sizes, and design low-cost hardware and software support for RePRAM. Our proposed scheme involves minimal hardware modifications (that have less than 1% on-chip and off-chip area overheads). Also, our schemes can improve the PRAM lifetime by up to 43× (times) over a chip with no error correction capabilities, and outperform prior schemes such as DRM and ECP at a small fraction of the hardware cost. The performance overhead resulting from our scheme is less than 7% on average across 21 applications from SPEC2006, Splash-2, and PARSEC benchmark suites.","PeriodicalId":236791,"journal":{"name":"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2012.6263950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
As main memory systems begin to face the scaling challenges from DRAM technology, future computer systems need to adapt to the emerging memory technologies like Phase-Change Memory (PCM or PRAM). While these newer technologies offer advantages such as storage density, non-volatility, and low energy consumption, they are constrained by limited write endurance that becomes more pronounced with process variation. In this paper, we propose a novel PRAM-based main memory system, RePRAM (Recycling PRAM), which leverages a group of faulty pages and recycles them in a managed way to significantly extend the PRAM lifetime while minimizing the performance impact. In particular, we explore two different dimensions of dynamic redundancy levels and group sizes, and design low-cost hardware and software support for RePRAM. Our proposed scheme involves minimal hardware modifications (that have less than 1% on-chip and off-chip area overheads). Also, our schemes can improve the PRAM lifetime by up to 43× (times) over a chip with no error correction capabilities, and outperform prior schemes such as DRM and ECP at a small fraction of the hardware cost. The performance overhead resulting from our scheme is less than 7% on average across 21 applications from SPEC2006, Splash-2, and PARSEC benchmark suites.